
Fig. 1. (Left) Water filling a river bed surrounded by a canyon, with effective resolution 5122 × 1024. Three refinement levels are used, based on proximity to the
terrain. (Right) Sources inject water into a container and collide to form a thin sheet, with effective resolution 5123. Adaptivity pattern shown on background.

We present an efficient and scalable octree-inspired fluid simulation frame-
work with the flexibility to leverage adaptivity in any part of the computa-
tional domain, even when resolution transitions reach the free surface. Our
methodology ensures symmetry, definiteness and second order accuracy of
the discrete Poisson operator, and eliminates numerical and visual artifacts
of prior octree schemes. This is achieved by adapting the operators acting
on the octree’s simulation variables to reflect the structure and connectiv-
ity of a power diagram, which recovers primal-dual mesh orthogonality
and eliminates problematic T-junction configurations. We show how such
operators can be efficiently implemented using a pyramid of sparsely popu-
lated uniform grids, enhancing the regularity of operations and facilitating
parallelization. A novel scheme is proposed for encoding the topology of
the power diagram in the neighborhood of each octree cell, allowing us to
locally reconstruct it on the fly via a lookup table, rather than resorting
to costly explicit meshing. The pressure Poisson equation is solved via a
highly efficient, matrix-free multigrid preconditioner for Conjugate Gradi-
ent, adapted to the power diagram discretization. We use another sparsely
† M. Aanjaneya and M. Gao are joint first authors.
∗ M. Aanjaneya was with the University of Wisconsin - Madison during this work.
This work was supported in part by National Science Foundation grants IIS-1253598,
CCF-1423064, CCF-1533885 and by the Natural Sciences and Engineering Research
Council of Canada under grant RGPIN-04360-2014. The authors are grateful to Nathan
Mitchell for his indispensable help with modeling and rendering of examples. C. Batty
would like to thank Ted Ying for carrying out preliminary explorations on quadtrees.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2017 ACM. 0730-0301/2017/7-ART140 $15.00
DOI: http://dx.doi.org/10.1145/3072959.3073625

populated uniform grid for high resolution interface tracking with a narrow
band level set representation. Using the recently introduced SPGrid data
structure, sparse uniform grids in both the power diagram discretization
and our narrow band level set can be compactly stored and efficiently up-
dated via streaming operations. Additionally, we present enhancements to
adaptive level set advection, velocity extrapolation, and the fast marching
method for redistancing. Our overall framework gracefully accommodates
the task of dynamically adapting the octree topology during simulation. We
demonstrate end-to-end simulations of complex adaptive flows in irregularly
shaped domains, with tens of millions of degrees of freedom.

CCS Concepts: • Computing methodologies → Physical simulation;

Additional Key Words and Phrases: Power diagrams, Octrees, Adaptivity

ACM Reference format:
Mridul Aanjaneya, Ming Gao, Haixiang Liu, Christopher Batty, and Eftychios
Sifakis. 2017. Power Diagrams and Sparse Paged Grids for High Resolution
Adaptive Liquids. ACM Trans. Graph. 36, 4, Article 140 (July 2017), 12 pages.
DOI: http://dx.doi.org/10.1145/3072959.3073625

1 INTRODUCTION
Liquids exhibit complex and detailed motion across a vast range
of scales, from tiny ripples to huge waves; this fact motivates the
desire for liquid simulation tools that can handle ever increasing
levels of resolution. While a key avenue towards this goal is the
development of more efficient numerical methods on regular uni-
form grids that conserve mass with large time steps [Chentanez and
Müller 2012; Lentine et al. 2011, 2012] and allow for fast pressure
projection [Ando et al. 2015; Dick et al. 2016; Lentine et al. 2010; Liu

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

Power Diagrams and Sparse Paged Grids for High Resolution Adaptive
Liquids

MRIDUL AANJANEYA†∗, Rutgers University
MING GAO† and HAIXIANG LIU, University of Wisconsin - Madison
CHRISTOPHER BATTY, University of Waterloo
EFTYCHIOS SIFAKIS, University of Wisconsin - Madison

140:2 • M. Aanjaneya et al.

Fig. 2. Two sources inject water into a container forming a thin sheet, with effective resolution 5123. The adaptivity pattern is shown in Figure 1; a narrow
band level set at resolution 20483 is used for interface tracking. As instabilities develop in the flow field over time, the sheet starts to wobble, creating ripples.

et al. 2016; McAdams et al. 2010; Molemaker et al. 2008; Zhang and
Bridson 2014], further computational gains can be obtained through
spatial adaptivity — dedicating higher resolution to regions of high
importance. Amongst the most natural approaches for augmenting
standard staggered grid discretizations with spatial adaptivity is to
replace the underlying grid structure with that of an octree. The crit-
ical challenge that arises for octrees is the treatment of T-junction
(or hanging node) configurations where small cells are incident on
larger cells. This is not solely a matter of bookkeeping in data struc-
tures: the discretization of the physics at these points must be done
with care, or disturbing visual and numerical artifacts can emerge.

Losasso et al. [2004] proposed the first method to simulate liquids
on octrees. They sacrificed accuracy in the discretization of pressure
gradients near T-junctions in exchange for a simpler symmetric and
positive definite Laplacian matrix that can be solved by Conjugate
Gradient. The price for this choice was the loss of orthogonality
between the stored velocity components at the T-junction cell faces
and the corresponding discrete pressure gradients across those faces.
This approximation reduces the accuracy of the pressure to first
order, and gives rise to non-physical parasitic currents at T-junctions
even for hydrostatic scenarios, as discussed by various authors
[Ando et al. 2013; Batty et al. 2010; Chentanez et al. 2007; Ferstl
et al. 2014; Losasso et al. 2006]. Losasso et al. [2006] subsequently
proposed a modification that raises the accuracy of the pressure field
to second order, but allows for adaptivity only in regions completely
interior to the fluid. It is not clear how to incorporate solid or free
surface boundaries in the presence of adaptivity, which necessitates
uniformly refining all regions near surfaces and boundaries.
In this paper, we describe a new staggered octree discretization

that retains the positive definiteness and advantageous scaling of
Losasso’s scheme, while eliminating inconsistent pressure gradi-
ents and enabling accurate boundary condition enforcement, even
across regions of changing resolution. Inspired by fluid animation
approaches relying on Voronoi and power diagrams [Brochu et al.
2010; de Goes et al. 2015; Sin et al. 2009], we modify the implied
geometry of the octree near T-junctions to have the form of a power
diagram; this effectively eliminates the problematic T-junctions and
recovers orthogonality between pressure gradients and cell faces.
Embedded free surface and solid boundary conditions can then be
directly incorporated on this hybrid mesh, per Brochu et al. [2010].
The resulting octree Poisson solver is second order accurate in pres-
sure and artifact-free. In spite of this different geometric perspective
used in our discretization, we retain (with minor caveats) the ability

to store our simulation variables on a traditional octree rather than
an explicit unstructured mesh, and exploit the regularity of this
representation in the interest of performance.
We complete our octree simulator to support end-to-end liquid

simulation of complex large-scale scenarios via several complemen-
tary enhancements. We leverage the SPGrid data structure [Setaluri
et al. 2014] to allow our solver to process octree data at performance
levels competitive with regular uniform grids containing a similar
number of variables. Notably, this standard of efficiency is notori-
ously difficult to match with pointer-based octree implementations
or unstructured mesh discretizations, due to the impact that indirect
and irregular memory access (or the overhead of explicit storage of
topology) has on the optimal utilization of the available bandwidth.
We accurately track the surface using a uniformly high resolution
narrow band level set, exploiting the compact footprint of the SPGrid
structure and an adaptively multi-stepped semi-Lagrangian advec-
tion scheme. To support accurate fast-marching-based level set redis-
tancing on octrees, we perform a localized Delaunay triangulation
of the cell centers incident on T-junctions, and adapt standard fast
marching strategies to the resulting hybrid tetrahedral/hexahedral
mesh. We solve the sparse, symmetric definite linear systems that
arise from our Poisson discretization using a lightweight multigrid
preconditioner for the Conjugate Gradient method. We efficiently
store the multigrid hierarchy using SPGrid, while showing how a
first order accurate multigrid V-cycle can be used as a building block
of a very effective preconditioner for the second order problem.

Contributions. We developed an accurate and efficient staggered
octree-based fluid simulation framework, featuring support for:

• second order accurate pressure projection allowing adap-
tivity even along solid and air boundaries;

• excellent affinity to parallelism-optimized data structures
for octree storage (SPGrid), allowing us to easily scale to
tens of millions of degrees of freedom on a single computer;

• a simple and effective narrow band level set interface track-
ing scheme that uses SPGrid to reduce memory footprint;

• an enhanced fast marching method for octrees;
• a tailored multigrid-preconditioner for Conjugate Gradient.

2 RELATED WORK
Our approach builds on standard grid-based fluid animation tech-
niques; Bridson [2015] provides a useful overview of this family
of methods. We adopt a staggered discretization, which naturally

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids • 140:3

avoids instabilities from odd-even decoupling (“checkerboarding")
in the pressure field. Our treatment of irregular free surface and
solid boundaries draws on the ghost fluid method [Enright et al.
2003; Gibou et al. 2002] and the variational/cut-cell solid scheme
[Batty et al. 2007; Ng et al. 2009], respectively. Incorporating these
ideas into our solver ensures accurate pressure solutions and avoids
voxelization artifacts. While we focus on adaptive approaches for
Eulerian methods, Lagrangian SPH and vortex methods have also
been applied in the context of adaptivity [Adams et al. 2007; Golas
et al. 2012; Solenthaler and Gross 2011; Takahashi and Lin 2016].

Octrees. Popinet [2003] proposed the first octree-based fluid solver,
extending earlier adaptive mesh refinement (AMR) schemes for the
Poisson problem in the computational fluid dynamics community
[Martin and Cartwright 1996; Minion 1996]. Losasso et al. [2004]
extended this approach with support for free surface flow, and incor-
porated a simplification to yield symmetric positive definite systems
for pressure projection. Applications of their method have included
simulation of bubbles [Hong and Kim 2005], coupling with dynamic
objects [Guendelman et al. 2005], and even lightning [Kim and Lin
2007]. Unfortunately, this approach reduces the pressure accuracy
to first order and introduces visual artifacts in the velocity field.
Losasso et al. [2006] later improved the discretization of the pres-
sure projection to recover second order accuracy while preserving
symmetry, although it is unclear how to incorporate irregular bound-
ary conditions near T-junctions because the necessary modifications
to the Poisson stencil are mutually incompatible; we overcome this
limitation to allow refinement and boundaries to seamlessly co-exist
without loss of accuracy. Ferstl et al. [2014] proposed a finite element
method (FEM) that subdivides octree surface cells cut by surface ge-
ometry to yield a conforming mesh, applying Nitsche’s method for
the free surface and stabilization to minimize checkerboarding. Like
Losasso’s method, it requires boundaries to be uniformly resolved.
Furthermore, solid boundaries were treated in a voxelized fashion.
In contrast to the preceding methods, our approach also leverages
the recent SPGrid data structure [Setaluri et al. 2014] to overcome
the significant efficiency penalties inherent in typical pointer-based
octree structures. Nielsen and Bridson [2016] recently discussed
some details of the FEM-based adaptive tile-tree scheme used in
Maya’s Bifrost simulator, although full details are not available. Like
our method, they aim to preserve a regular grid-like structure to
maximize efficiency, but do so using a more rapidly branching oc-
tree involving 5 × 5 × 5 blocks, rather than our pyramid of SPGrids.
Their use of FEM was explicitly motivated by the fact that previ-
ous finite volume octree schemes have struggled to simultaneously
provide matrix symmetry, second order accuracy, and support for
non-axis-aligned boundaries; our method achieves all three.

Stretched Grid Cells. Another quite useful, albeit more restrictive,
approach to spatial adaptivity is the use of stretched grid cells. For
example, portions of a regularly sampled domain may be replaced
with tall cells that have been stretched along a single axis [Chentanez
and Müller 2011; Irving et al. 2006], or larger sections of a regular
grid may be stretched along multiple axes by essentially translating
entire grid lines [Zhu et al. 2013]. These approaches preserve most of
the regular grid efficiency while offering some benefits of adaptivity.

Tetrahedral Meshes. An important family of alternatives to oc-
trees are unstructured or partially structured adaptive tetrahedral
meshes. An array of staggered Eulerian finite volume discretizations
have been presented for such meshes [Batty et al. 2010; Chentanez
et al. 2007, 2006; Elcott et al. 2007; Feldman et al. 2005; Klingner
et al. 2006]. In particular, Batty et al. [2010] extended these methods
with support for irregular free surfaces and solids to allow straight-
forward adaptivity even in the presence of boundaries, a feature
we likewise pursue. While purely unstructured tetrahedral methods
incur non-trivial computational costs due to frequent remeshing
and data structure overhead, semi-structured lattice-based variants
can somewhat reduce these costs by exploiting an underlying octree
structure [Chentanez et al. 2007], although they still incur greater
overhead than a pure octree. One clear advantage of tetrahedral
meshes over basic octrees is that they support adaptivity without
any T-junctions. A drawback is that pressures must be placed at
tetrahedron circumcenters to avoid artifacts arising from the pres-
sure solve, yet circumcenters are not guaranteed to be inside their
corresponding tetrahedra [Batty et al. 2010]. Ando et al. [2013]
partially circumvent this issue with a finite element variation that
instead places velocity vectors at tetrahedron barycenters and pres-
sures at vertices. However, the authors note that they must drop
back to a first order discretization for poorly shaped tetrahedra
which occur near resolution transitions in their lattice mesh; by
contrast, we preserve second order accuracy across transitions and
throughout the domain. Node-based Lagrangian schemes that use
dynamically remeshed unstructured tetrahedral meshes can also
support adaptivity [Clausen et al. 2013; Misztal and Bærentzen 2012;
Misztal et al. 2010]. These methods rely on stabilization terms or
extra remeshing procedures to avoid locking or odd-even pressure
decoupling artifacts. Moreover, they are generally costlier than
Eulerian approaches due to the overhead of continuous remeshing
and unstructured mesh manipulation.

Voronoi Diagrams. Since the circumcentric dual of a Delaunay
tetrahedralization is a Voronoi diagram, the Poisson equation can
be readily discretized on this dual mesh too, using essentially the
same staggered finite volume approaches as the tetrahedral schemes
above. This has been exploited in several ways. Sin et al. [2009]
constructed a particle-based Lagrangian scheme that performs pres-
sure projection on the Voronoi diagram of the particles at each step.
Brochu et al. [2010] combined a mesh-based surface tracking scheme
with a carefully constructed Voronoi diagram to enable capturing
of thin liquid features. English et al. [2013a; 2013b] constructed a
nested (Chimera) grid scheme relying on the flexibility of the local
Voronoi structure to stitch together the boundaries between regu-
lar grids of differing resolutions. Voronoi diagrams have similarly
been exploited in computational physics: Guittet et al. improved
the ghost-fluid method for two-phase Poisson problems by aligning
Voronoi faces with the fluid interface [Guittet et al. 2015a], and
separately used the Voronoi diagram of fluid face midpoints to treat
viscosity on non-graded octrees [Guittet et al. 2015b].

Power Diagrams. Mullen et al. [2011] observed that regular tri-
angulations and their associated dual power diagrams can offer

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

140:4 • M. Aanjaneya et al.

Fig. 3. Four sources pour water that collides with a kinematic rotating object in a container, with effective resolution 5123. The adaptivity pattern, illustrated
on the left, continuously rotates with the central spinning object. A narrow band level set with 20483 resolution is used to track the free surface.

increased flexibility in meshing, while preserving primal-dual or-
thogonality. This property is critical for constructing accurate dis-
crete gradient and divergence operators [Batty et al. 2010] in the
style of Discrete Exterior Calculus (e.g., [Elcott and Schröder 2006]).
Building on this idea, de Goes et al. [2015] developed a Lagrangian
particle method that constructs a power diagram at each time step
for enforcing incompressibility. Krivá et al. [2016] used the power di-
agram of a quadtree in two dimensions to solve a Poisson problem in
the context of image processing, although they did not identify their
construction as a power diagram. Similarly, Sifounakis et al. [2016]
proposed a so-called virtual slanting approach for a Navier-Stokes
solver on quad/octrees; however, their strategy of simply slanting
faces breaks down in three dimensions, where proper orthogonality
cannot be maintained without (explicitly or implicitly) changing the
local cell connectivity. By contrast, we observe that the desired con-
struction is a power diagram, and use this fact to easily determine
the correct grid geometry and topology.

Interface Tracking. We represent the liquid surface using a level
set scheme [Sethian 1999], a common choice in fluid animation, and
specifically a narrow band variant [Adalsteinsson and Sethian 1995]
which we further customize to our application. The particle level
set method of Enright et al. [2002] is a popular variant; it maintains
Lagrangian particles around the Eulerian interface to accurately
reconstruct the surface, building on ideas proposed by Foster and
Fedkiw [2001]. Rather than exploit particles, however, we employ a
purely Eulerian narrow band method at a resolution higher than the
simulation mesh, similar to previous authors (e.g., [Bojsen-Hansen
and Wojtan 2013; Goldade et al. 2016; Kim et al. 2009]). We differ in
proposing a multi-stepping semi-Lagrangian strategy for reduced
dissipation, and in leveraging the SPGrid data structure for a highly
optimized implementation. Rather than increase resolution, Heo et
al. [2010] obtained greater detail by proposing a pseudo-spectral
level set method. The twomost common alternatives to level sets are
pure particle representations, as in PIC or SPH schemes [Desbrun
and Gascuel 1996; Foster and Metaxas 1996; Jiang et al. 2015; Zhu
and Bridson 2005], and Lagrangian triangle meshes with dynamic
topology [Brochu and Bridson 2009; Müller 2009; Wojtan et al. 2009].
Various hybrids have also been proposed [Bargteil et al. 2006; Yu
et al. 2012]. While each approach has strengths and weaknesses,
level sets stand out for their simplicity, smoothness, and potential for
efficiency. The affinity of narrow band level sets to the SPGrid data
structure allows for a particularly compact surface representation.

2.1 SPGrid arrays and sparse uniform grid pyramids
Our algorithmic formulation draws upon the work of Setaluri et
al. [2014] and exploits two of their key proposals. First, it was ob-
served that in lieu of a traditional pointer-based representation, a
Cartesian octree can be stored as a pyramid of sparsely populated
uniform grids. Thus, any cell of the octree can be uniquely identified
with a single cell of one of the uniform grids in the pyramid. It was
shown that the global computation of the Laplace operator can be
equivalently performed by alternating (a) perfectly uniform stencils
on each individual grid, and (b) highly structured data transfers
solely between adjacent grids in the pyramid. Section 4 describes
how we exploit this capability for our power diagram discretization.

Second, a low-level data structure named SPGrid (or “Sparse Paged
Grid”) was proposed for compact storage and efficient stream pro-
cessing of sparsely populated uniform grids. SPGrid leverages the
Virtual Memory subsystem, in conjunction with a Morton ordering,
to index into a vast address range, but only materialize into physical
memory those parts of the array that are actually touched. Thus, an
array that may occupy more than 1TB if densely allocated, can oc-
cupy as little as 1GB in physical memory if only a spatially coherent
0.1% of this array was actually populated with data. Recognizing
that simulation applications commonly utilize a large number of
scalar or vector fields with nearly (or exactly) identical index do-
mains, SPGrid interleaves several of these distinct “channels” within
a 4KB page. Thus, an SPGrid with 4 float-valued channels fits a
geometric block of 8× 8× 4 variables for each of those channels in a
4KB page, while 16 float-valued channels would yield a block size of
4×4×4. The number of channels can easily vary to cater to different
tasks; for example, we use only 4 channels for interface tracking,
and 16 channels for solving the incompressible Euler equations.

3 METHOD OVERVIEW
Our simulation methodology necessitates certain interventions in
various parts of a standard liquid simulator. A large fraction of our
contributions are centered around pressure projection, which as
many authors have asserted [Ando et al. 2015; Dick et al. 2016;
Lentine et al. 2010; Liu et al. 2016; McAdams et al. 2010; Molemaker
et al. 2008; Zhang and Bridson 2014] is typically the most expensive
component of the simulation loop in high resolution domains. Sec-
tion 4 discusses several aspects of our pressure solver, including the
discretization of the Poisson equation using power diagrams, the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids • 140:5

efficient storage of the discrete equations and unknowns in an adap-
tive grid structure, and fast solution of the resulting system using
a preconditioner for Conjugate Gradient adapted from a multigrid
scheme. Section 5 presents our interface tracking approach that
uses a highly resolved implicit geometry representation of the free
surface, localized to a narrow band around the moving interface and
stored in a sparse grid structure (SPGrid) [Liu et al. 2016; Setaluri
et al. 2014]. The same section also discusses details on how this
representation is advected forward in time, interpolation of scalar
and vector quantities, and enhancements to fast marching and
velocity extrapolation that are mandated by our power diagram
discretization. Important implementation details and optimizations
in our formulation are reviewed in Section 6.

4 PRESSURE PROJECTION ON MODIFIED OCTREES
To achieve an accurate staggered finite volume discretization of
the Poisson equation, the faces of the primal mesh which store
velocity components should be orthogonal to the edges of the dual
mesh, which correspond to pressure gradients [Batty et al. 2010;
Perot and Subramanian 2007]. For sufficiently regular meshes this
gives second order accurate pressures. In this section, we describe
our discretization for the Poisson equation that exploits both the
regularity of octrees for aggressive parallelization and the inherent
primal-dual orthogonality of power diagrams for accuracy. Our
objective is to solve the incompressible Euler equations

∂u
∂t
+ (u · ∇)u +

∇p

ρ
= f (1)

∇ · u = 0 (2)
with a splitting scheme following Stam [1999]. Here, u = (u,v,w)

is the vector velocity field, f encapsulates external forces, p is the
scalar pressure field, t is time, and ρ is the liquid density.

4.1 Power diagram discretization
Aurenhammer [1987] defines the power of a point x with respect to
a sphere of radius r as d2 − r2, where d is the distance of the point
from the center of the sphere. Given a set of spheres, their power
diagram is then a partition of space where each point is associated
to the sphere with minimum power. We construct an octree-based
power diagram by conceptually placing a sphere at each octree
cell center with a radius of ∆x/

√
3 (or ∆x/

√
2 in 2D), where ∆x

is the cell’s side length; this yields the circumsphere for each cell.
For uniform resolution regions of the tree, the resulting power di-
agram leaves the regular Cartesian grid pattern unchanged. More
remarkably, for T-junctions in two dimensional graded quadtrees,
this choice gives a power diagram with exactly the same cell con-
nectivity as the original quadtree, but with the geometry adapted
to recover primal-dual orthogonality (see Figure 4(a,b)). However,
in three dimensions a minor wrinkle arises: a given cell remains
face-connected to its original face neighbors, but may now also
share new faces with its original edge neighbors (see Figure 4(d,e)).
Nevertheless, as we describe below, this geometry is still amenable
to efficient computation of the Poisson equation.

We store pressuresp at octree cell centers and normal components
of the velocity field u at power cell faces. For computing the pressure,
we discretize the Poisson equation in finite volume fashion over the

a b c

d e

Fig. 4. (Top) A 2D cell bordering two T-junctions, along with its correspond-
ing power diagram (middle), and the Voronoi diagram of the cell centers
(right). The cells of the power diagram have the same neighbor relationships
as the original quadtree, but the dual edges are orthogonal to cell faces.
The Voronoi diagram of the same geometry creates new face connections
between nearby cells at the same level. (Bottom) A 3D cell bordering three
T-junctions, along with its corresponding power cell. Note the new faces
that emerge between neighbors that previously only shared an edge. Colors
imply resolution and neighbor relationship to the central coarse cell.

power cells as

Vcell∇ ·
∇p

ρ
=

∑
faces

Aface

(
∇p

ρ
· n

)
(3)

where n is the unit normal vector pointing out of a face, Aface is the
face area, and Vcell is the volume. We similarly compute the discrete
divergence as

Vcell∇ · u =
∑
faces

Aface(u · n). (4)

For treating boundary conditions, we adapt an earlier unstructured
mesh embedded boundary approach [Batty et al. 2010; Brochu
et al. 2010]. In our setting, this allows both the free surface and
solid boundaries to arbitrarily cut through the domain, even near
T-junctions. It requires only liquid signed distance values at cell
centers and solid signed distance values at cell vertices. By contrast,
previous methods [Losasso et al. 2006, 2004] required uniformly
refined cells near boundaries. Our resulting linear system remains
sparse, symmetric and positive definite, and ensures second order
accuracy of the computed pressure field.

Voronoi diagram octrees. Another option to recover orthogonal-
ity would be the Voronoi diagram of the octree cell centers. For
non-graded trees this can yield very general unstructured meshes
that discard the regularity benefits of the tree structure (see e.g.,
[Guittet et al. 2015b]). While the variety of mesh configurations can

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

140:6 • M. Aanjaneya et al.

naturally be reduced by grading, the Voronoi topology still differs
more strongly from the original tree than for the power diagram,
even in the simpler 2D setting (see Figure 4(c)). We therefore prefer
the power diagram as it provides the necessary orthogonality while
better preserving the original octree structure.

4.2 Pyramid of sparse uniform grids
By default, a power diagram would require an explicit mesh for
storing the topological connectivity. However, such a representation
would necessitate expensive lookups near T-junctions. Since power
diagrams preserve the original octree structure, with the caveat
of introducing some additional faces between edge neighbors, we
adopt an approach similar to Setaluri et al. [2014] of organizing
computation on a pyramid of sparsely populated uniform grids that
make much better use of the available hardware memory bandwidth.
We first briefly review this approach and subsequently highlight the
necessary modifications required for power diagrams. To identify
cells and faces that carry degrees of freedom, Setaluri et al. [2014]
defined active cells and faces as follows:

• A cell at a given level of the pyramid is active if it is geo-
metrically present and undivided in the octree.

• A face at a given level is active if that face is geometrically
present and undivided in the octree, implying that every
active face has at least one active cell neighbor at that level.

For efficiently emulating the building blocks of adaptive fluid sim-
ulation, they used two fundamental algorithmic kernels: stencil
operations within a single level, and transfer operations between
adjacent levels in the pyramid. This additionally requires the con-
cept of ghost cells. Suppose we index each level with 1 ≤ l ≤ L

where lower indices denote finer grids, and let ClI denote a cell that
natively lives at level l with multi-dimensional index I . Then, a cell
ClI is ghost if all three of the following conditions are jointly met:

(1) ClI is not active at level l ,
(2) ClI neighbors a cell that is active at level s ≤ l , and
(3) An active, coarser parent of ClI exists at some level l⋆ > l .

Figure 5 shows the pyramid of sparse grids, along with all ghost
cells and active cell/face degrees of freedom. To transfer data be-
tween adjacent levels of the pyramid, two more operators are used:

(1) GhostValuePropagate(): an upsampling routine in which
data from level l is copied to fine ghost children at level l −1,

(2) GhostValueAccumulate(): a downsampling routine inwhich
data in level l accumulates contributions from any fine ghost
children at level l − 1.

Essentially, ghost cells provide a mechanism to combine informa-
tion that is shared across different levels of resolution, while only
focusing effort one level at a time, enabling optimizations native to
uniform grids. A ghost cell can either be a source of a numerical
value originating from a coarser level in the pyramid (by mirroring
the coarse value), or a placeholder for the partial result of an opera-
tion that would have otherwise required access to a coarser variable.
We refer the reader to the work of Setaluri et al. [2014] for details
on how this representation can be used to efficiently compute the
discrete gradient, divergence, and Laplace operators.

Fig. 5. Pyramid of sparse uniform grids. All active cell and face degrees of
freedom are shown along with ghost cells (square outlines) at each level.

Enhancements for power diagrams. Since power diagrams may
introduce new faces between cells that previously only shared an
edge, the definition of ghost cells requires some modifications. In
the second of the three criteria we previously listed for identifying a
ghost cell, Setaluri et al. [2014] considered only face neighbors ofClI
to check if any of themwere active at level s ≤ l ; we now examine all
octree cells that share an edge with ClI (in 3D), and treat those that
share a face of the power diagram with ClI as additional neighbors
in deciding whether a ghost cell should be spawned. Moreover, their
implementation of the discrete Poisson operator (which was based
on the formulation of Losasso et al. [2004]) yielded stencils with
closed-form coefficients even at level transitions. By contrast, our
stencil coefficients are determined by the geometry of the power
diagram. To efficiently retrieve these coefficients at run-time, we
adopt certain restrictions on our grading scheme that make the
power diagram geometry of a cell dependent only on its 1-ring
neighborhood. This allows us to retrieve stencil coefficients via a
look-up table, indexed by a compact descriptor of the local topology
as we propose in Section 6.

As mentioned in Section 4.1, we store velocities at all power cell
faces. For faces that are exactly homologous to faces on the original
octree, similar to Setaluri et al. [2014], we dedicate 3 channels for
storing the individual components of the velocity field (in the stan-
dard octree, those would have been the u,v,w axis-components of
the velocity field; in our case they are normal velocity components
relative to the respective power diagram faces). In our power dia-
gram, however, faces of the power diagram (and correspondingly
normal velocity variables that require storage) can exist in 3D be-
tween cells that were edge neighbors in the original octree. An edge
of the octree can have up to four cells incident to it; however only
two of those four cells can actually be connected in any given power
diagram under our formulation. Specifically, it is possible for the
pair of cells indexed Ci, j,k and Ci, j+1,k+1 (sharing an edge aligned
with the x-axis) to share a face of the power diagram. Likewise,
cells Ci, j+1,k and Ci, j,k+1 (incident on the same edge, as far as the
octree is concerned) could instead share a face of the power dia-
gram. However, at most one of the aforementioned pairs could have
a power diagram face connecting them, in any given scenario. Thus,
we can associate the normal velocity component associated with

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids • 140:7

either of these two cases with the same octree edge, with the under-
standing that at most one of these two neighboring relations can
be present at the same time; the determination of which of the two
cases (if any) we have can be made by examining the local octreee
topology. Hence, velocity components associated with such cases of
edge neighbors can be conceptually stored on 3 offset grids, each of
them centered on the midpoint of edges aligned with the x , y, and z
axes, respectively. We simply dedicate three additional channels in
SPGrid to store those special velocity components (we would have
called them edge-centered velocities if such a concept existed in the
original octree). We do not explicitly store a description for the
direction of this edge-centered velocity component, as this will be
automatically reflected in the stencils of those cells incident to it.

4.3 Multigrid preconditioner
Our power diagram discretization, paired with a topology encod-
ing scheme (see section 6) will allow the Laplace operator to be
applied implicitly without building its explicit matrix form. This
gives the opportunity to use a matrix-free method such as Conju-
gate Gradient for solving the Poisson equation. Naturally, a good
preconditioner is essential; Setaluri et al. [2014] used a very effec-
tive adaptive multigrid preconditioner. However, their approach
was specifically tailored for the first order accurate discretization of
Losasso et al. [2004]. Since both our power diagram discretization,
as well as the first-order accurate approach [Losasso et al. 2004; Se-
taluri et al. 2014] have exactly the same set of pressure variables, it
would be natural to start with the multigrid V-cycle preconditioner
proposed by Setaluri et al. [2014] as a baseline, and attempt to adapt
it to the power diagram discretization. The most straightforward
way to make such an adaptation would be to replace the discretiza-
tion at the finest level of the hierarchy with our newly proposed
power diagram formulation, retaining the first-order accurate oper-
ators at all coarser levels. This adaptation is quite effective; in our
tests it consistently achieves preconditioning efficiency comparable
with what Setaluri et al. [2014] report for the first-order problem.

Although this approach is effective, there is a modest penalty
to be paid in terms of implementation efficiency. The single most
costly component of a multigrid V-cycle is the smoothing routine
at the finest resolution of the discretization hierarchy. This step is
now using our second order power diagram discretization which,
although quite efficient, does not permit the full extent of aggres-
sive optimizations of the first order scheme [Setaluri et al. 2014],
which does not require local topology queries to define its stencils.
Thus, we have implemented a hybrid alternative: We first invoke
the smoothing routine, using the second order power diagram dis-
cretization, but iterate it only near boundaries and level transitions.
We subsequently update the residual, and use a first order accurate
multigrid V-cycle to solve the error equation and generate a correc-
tion across the entire domain. We follow up with a second sweep
of smoothing the second order discretization (near boundaries and
level transitions) to ensure symmetry of the preconditioner thus
crafted. Let us denote by L1 the first order Laplace operator from
Setaluri et al. [2014], and let M1 ≈ L−11 be the multigrid precondi-
tioner they defined in their work. Finally, let L2 be our second order
Laplace discretization, using the power diagram. We define a new
preconditionerM, whose action w = Mq is computed as follows:

(1) Starting with a zero initial guess p0 = 0, executek iterations
of the damped Jacobi method on the equation L2p = q
(input vector is used as right hand side). This is only applied
to a band (about 3 voxels wide) around the boundaries and
level transitions. Let p1 be the iterate that results from this
operation, and r1 = q − L2p1 the associated residual.

(2) Compute a correction δp = M1r1 by applying the first order
accurate preconditioner M1 from Setaluri et al. [2014] to
the residual r1. Add the correction to p1, to obtain a new
approximation p2 = p1 + δp.

(3) Repeat k additional iterations of the same Jacobi method
on the equation L2p = q, but this time use p2 as the initial
guess. Let w denote the result at the end of this iteration.

We can easily verify that vectors w and q are related by a linear
map w = Mq (there is nothing in steps 1-3 above that introduces
any nonlinearity, and it is easy to verify that when q = 0 we would
also have w = 0). In fact, a careful look at the matrix formula for
the Jacobi iteration reveals that the entire matrix M is symmet-
ric and positive definite, assuming that M1 is SPD as well. We use
the algorithm above to implicitly apply M as a preconditioner to
Conjugate Gradient for the system L2p = f . In our examples, this
preconditioner achieved very similar convergence performance to
the straightforward alternative approach of using a second order
operator at the finest level of a V-cycle preconditioner, achieving
satisfactory convergence within 6-10 iterations across all resolu-
tions. It was necessary to perform an adequate number (k ≈ 8) of
boundary smoothing iterations in steps (1) and (3) of the aforemen-
tioned preconditioner application to achieve this good convergence
behavior, but the ability to restrict this effort to just the boundary
region (while using an aggressively optimized first order V-cycle)
made this a favorable trade-off at large resolutions.

5 INTERVENTIONS IN THE SIMULATION PIPELINE
To track the dynamically evolving liquid surface, we designed a
level set scheme similar in spirit to prior work [Bargteil et al. 2006;
Bojsen-Hansen and Wojtan 2013; Goldade et al. 2016; Kim et al.
2009] in the sense that we use the SPGrid data structure to store an
Eulerian description of a narrow band around the free surface at
a significantly higher resolution than the velocity data — typically
by a factor of 4 or 8 (see Figure 6). Thus, we use two separate
meshes, a background simulation mesh that is an octree, and an
interface tracking grid (or fine level set grid) that is a single SPGrid
(rather than a pyramid). Note that the velocities natively live only
on the octree, and we also store and evolve a separate (coarse)
level set on the octree because our fine representation does not
carry inside/outside information beyond a narrow band of the free
surface. The fine level set representation only requires an SPGrid
with 4 channels (1 channel for Boolean flags associated with domain
geometry, 1 for the level set, and 2more channels for fast marching).

Level set advection. The time step ∆t is determined by the finest
effective resolution of the octree, since the velocities live natively
on the octree. However, this time step will be overly dissipative
for advecting the fine level set forward in time using a standard
semi-Lagrangian update, and may require more expensive schemes
for volume conservation [Lentine et al. 2012]. We follow a more

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

140:8 • M. Aanjaneya et al.

Fig. 6. A time-evolving Eulerian description of a narrow band around the
interface is stored at a significantly higher resolution (shown in green) in
our framework. This representation is used to correct the level set field on
the octree after every advection step.

accurate approach where we divide this time step bym, wherem
is the factor by which the fine level set resolution is higher than
the effective resolution of the octree. Next, we take m steps (of
forward Euler) backwards along the velocity field, where each step
is performed with a time step size of ∆t/m.
At each step, we reach a new point p

where we compute a new interpolated ve-
locity before taking the next step, tracing
a piecewise linear curve in the process (see
the figure inset). After themth step we inter-
polate the level set, and assign its value back
to the starting cell of the trajectory. Note that this approach still
allows for efficient parallelization without decreasing the time step
size according to the fine level set resolution. Of course, we maintain
a wide enough band so that the free surface still falls inside this band
after advection. Compared to simply upsampling the background
octree, tracing back a piecewise linear curve for semi-Lagrangian
advection foregoes the numerical dissipation that would have been
introduced bym individual advection and reinitialization steps, pro-
ducing more accurate results (see Figure 7). For advecting forward
the coarse level set stored on the octree, we follow the approach
of Setaluri et al. [2014]. Subsequently, we use the fine level set to
correct the coarse level set wherever we have valid ϕ-values.

Velocity interpolation and advection. The discretization of velocity
advection is more subtle as not all faces are axis-aligned, and so
velocities are not neatly segregated into orthogonal components.
Fortunately, this problem has been studied in prior work on unstruc-
tured mesh fluid simulation. To interpolate velocities at arbitrary
points, we first compute full velocity vectors at all cell centers. For
regular uniform cells, we average the axis-aligned face velocities;
for all power cells, we perform a least squares fit based on all the
face normal components [Feldman et al. 2005]. The dual mesh of
our power diagram consists of cubes and tetrahedra, whose vertices
are the octree cell centers. Therefore, having constructed velocity
vectors at the vertices of this mesh, we apply trilinear interpolation
inside cubic cells and barycentric interpolation on tetrahedra. For
improved efficiency and accuracy in regular regions away from level
transitions, we revert to standard per-axis face-based velocity inter-
polation. With this interpolation procedure at hand, we compute

full velocity vectors at the centroid of each face and advect them
using a standard semi-Lagrangian update, subsequently projecting
the velocity onto the face normal direction. Likewise, we use this
interpolant as needed for advecting the fine resolution level set.

Dynamic topology. After each advection step, the topology of the
SPGrid storing the high resolution level set needs to be updated; new
cells may emerge in the narrow band which require valid signed
distance values, and old cells may fall outside the band and should
be deleted. We do this by instantiating a new SPGrid and copying
over level set values for all cells at the interface. Subsequently, we
run fast marching on this SPGrid, activating new cells wherever
necessary. For efficiency, we first allocate all pages corresponding
to blocks that either contain the interface, or lie in the 1-ring of a
block that contains the interface. After this step, cells that lie within
the narrow band can be safely marked in parallel without any data
hazards. We note that Setaluri et al. [2014] speculated on the utility
of an enhancement to SPGrid, that could actually discard physical
pages no longer in use (in Linux, this would be via a variant of
the madvise system call), to allow dynamic additions and removals
to the same SPGrid. We did not find such an optimization to be
worthwhile here, as evaluating refinement criteria at the same time
while discarding prior data is an unnecessary complexity.

p1

p2

p3

p4

Fast marching and velocity extrapolation. We
store level set values ϕ on cell centers of the oc-
tree, and solve for fast marching in uniform re-
gions similar to Foster and Fedkiw [2001]. Near
T-junctions we adopt the approach of Sethian
and Vladimirsky [2000] and run fast marching
on a tetrahedral mesh. Note that this approach mandates that the
solid angle of each tetrahedron incident at the center of the current
cell should be less than π/2, and so we use the Delaunay tetrahedral-
ization of the centers of the face/edge neighbors and the current cell.
Note that ϕ-values were stored at grid nodes by Losasso et al. [2004],
and they simply ignored missing neighbors near T-junctions as
their grading scheme specifically coarsened away from the interface.
However, our discretization for the pressure specifically requires
ϕ-values at the cell centers to obtain second order accuracy near
the free surface [Gibou et al. 2002], and we adapt the simulation
grid topology even across the interface, thus our different approach.
A slight subtlety is that these tetrahedral meshes should be com-
puted locally per cell. To understand this consider the 2D illustration
shown in the figure inset: ∆p1p2p4 and ∆p1p3p4 must be used at
the point p1 to ensure an acute angle, while ∆p2p1p3 and ∆p2p3p4
should be used at the point p2. To extrapolate velocities outside
the liquid region we first interpolate velocities from power faces to
regular octree faces and use an approach similar to fast marching,
this time operating on faces instead of cells and copying over the
velocity value from the face closest to the free surface. For regular
uniform cells, identifying face neighbors is straightforward, while
near T-junctions we use the connectivity of the tetrahedral mesh
to identify all faces incident to cells that correspond to nodes in
the mesh. Subsequently, we interpolate back velocities from regular
octree faces to all power faces. Figure 7 shows a comparison of
the particle level set method [Enright et al. 2002] and our interface
tracking scheme for a sphere that undergoes a deformation in a

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids • 140:9

circular velocity field. The background grid resolution is 1282 in 2D
(or 1283 in 3D); particle level set has 256 particles per cell, and our
fine level set has 256 fine cells in 2D (or 4096 fine cells in 3D) per
coarse cell.

6 TOPOLOGY ENCODING AND OPERATOR STORAGE
The affinity of power diagrams to octrees is a crucial precondition
for leveraging aggressive optimizations. In Section 4, we discussed
how ghost cells in a pyramid of sparse uniform grids can facilitate
the transfer of information between variables at different levels. It
should be evident from our earlier discussion that the performance
potential of our proposed storage paradigm is strongly predicated
on the ability to easily load and store neighboring variables, and
efficiently perform stencil applications.We now describe our scheme
for encoding the local mesh connectivity and the stencils of the
discrete Laplace and divergence operators in a compact form.

6.1 Encoding of local power diagram topology
Our encoding scheme is based on the observation that the local
structure of each power cell is completely determined by its face
and edge neighbors. The octree neighborhood for each cell can be
trivially inferred from the SPGrid pyramid; in fact, every relevant
property of its neighborhood can be inferred by looking exclusively
at a single level of the pyramid. If a face/edge neighbor exists at
the same resolution, it is flagged as active. Otherwise, if that same
neighbor is flagged as ghost, there is a coarser neighbor on the other
side of that face/edge. If a neighbor is neither present as an active or
ghost cell, cells of finer resolution must reside on the other side. To
ensure that each neighborhood admits a well-defined encoding, we
grade such that all neighbors of a cell are (a) at the same resolution
as the current cell or one coarser, or (b) at the same resolution as
the current cell or one finer. We discuss both these cases below:

Cells with no coarser neighbor. If a cell has no ghost neighbors,
all its neighbors reside at the same resolution as itself or one level
finer, giving rise to exactly 218 distinct possibilities: each of the 6
face neighbors and 12 edge neighbors (18 neighbors total) is present
at the same resolution, or absent (in which case four finer neighbors
are present across each face, and two finer neighbors across each
edge). We assemble this into an 18-bit number N = b0b1b2 · · ·b18,
where every bit is defined as

bj =

{
1, if the j-th neighbor exists at same resolution
0, otherwise (neighbors are finer)

Cells with no finer neighbor. This is the
complement of the previous case; our grad-
ing restriction ensures that for such a cell, all
its neighbors reside at the same resolution
as itself or one level coarser. To elucidate our
encoding scheme, consider a cell (orange)
and its coarser parent (light blue); there are
8 possible arrangements of the child cell within its parent, and for
each of these configurations, there are only 6 possible coarse neigh-
bors allowable due to parity reasons (see figure inset). We use 3 bits
to encode the position of the child cell within its parent, and 6 bits
to indicate whether this cell has a coarse neighbor in the X , Y , and

Fig. 7. (Top) A comparison of (left) particle level set on a 1282 grid, and
(middle) our interface tracking scheme on a 20482 grid for a deforming
sphere at t = 5 seconds; (right) our scheme at t = 15 seconds. (Bottom) A
comparison of (left) particle level set on a 1283 grid and (right) our method
on a 20483 grid. For particle level set, near-interface cells use 256 particles.
The narrow band level set conserves volume well, over long time periods.

Z (face) directions, and XY , YZ , and XZ (edge) directions. For each
configuration of the child cell, there can only be one coarse neighbor
along each of these directions, making this encoding unique and
well-defined. Thus, a total of 9 bits are required for this case.

Ultimately, we dedicate one more bit to encode which of the
above two cases we have at hand, for a maximum of 19 bits that
can capture all possible local topologies afforded by our grading
scheme.

6.2 Retrieval of local Delaunay tetrahedralizations
Section 5 described our approach of using local Delaunay tetrahe-
dralizations for fast marching and velocity interpolation; here we
discuss their storage. Under our grading scheme, there are at most
114 geometrically distinct possibilities for the neighborhood of an
octree cell; 18 of those are face and edge neighbors at the same
resolution, 48 are cells of one finer resolution (4 cells across each of
the 6 faces, and 2 across each of the 12 edges), and 48 are cells of
one coarser resolution (8 configurations of a child in its parent cell,
and 6 possible coarse neighbors in each case). Hence, all tetrahedra
can only choose their vertices from 114 distinct cells, relative to the
current cell. As a consequence, each vertex only requires a byte to en-
code (or 4 bytes per tetrahedron). We construct a lookup table with
a (conservatively reserved) maximum of 128 tetrahedra incident to
each node, requiring 512 bytes per topological case, or slightly more
than 128MB to store the table for each of the 218 + 29 different local
topologies. We populate this table on-demand, constructing the con-
tents on-the-fly for any newly encountered case; our experiments
have indicated that this table is very sparsely occupied, making it
even easier for its contents to remain cached.

6.3 Hierarchical evaluation of differential operators
Efficient evaluation of the discrete Laplacian operator is critical to
the performance of the Conjugate Gradient solver. Our treatment

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

140:10 • M. Aanjaneya et al.

Fig. 8. Close-up view of the simulation of a river flowing through a canyon, previously shown in Figure 1. The adaptivity pattern, based on proximity to rigid
boundaries, is shown along a vertical cross-section, on the right. A narrow band level set with resolution 20482 × 4096 is used for interface tracking.

leverages the symmetry of this operator, allowing us to only store
the “convenient half" of the coefficient pairs. We first use the routine
GhostValuePropagate() helper to populate all ghost cells with the
value of their coarser parent. The following three cases arise:
Active cells with no finer neighbor The Laplacian for these cells
can be readily computed using their 6 face neighbors and 12 edge
neighbors (some of these neighbors may be ghost cells). We use a
lookup table (identical in terms of indexing to the one storing the
Delaunay tetrahedra) to retrieve the 19 stencil coefficients, corre-
sponding to the central cell and its 18 neighbors. The storage cost
is 19 floating point values or 76 bytes, for each of the 29 different
topologies. To maximize alignment with cache lines, we pad this
stencil up to 128 bytes, for a still nimble lookup table size of 64KB.
Ghost cells For each ghost cell, we use a 6 bit code to record which
of its 6 topologically allowable neighbors (3 face and 3 edge neigh-
bors, the direction being determined by parity) include this ghost
cell in their stencil. Depending on the value of these bits, we look
up the stencils of those neighboring cells and retrieve the coefficient
for this ghost cell. All such contributions are added together. At the
end of the Laplacian kernel, the routine GhostValueAccumulate() is
invoked to accumulate all partial Laplace contributions temporarily
deposited on ghost cells back to their coarse parents.
Active cells with no coarser neighbor In this case, we only con-
sider the contribution of face/edge neighbors at the same resolution,
and rely on the GhostValueAccumulate() routine to contribute the
missing stencil spokes to all finer neighbors. We retrieve 19 coeffi-
cients from our lookup table of 218 possible local topologies. As one
would expect, these coefficients are zero for all fine neighbors.

The evaluation of the discrete divergence operator is similar, with
the exception of accessing the velocity for the corresponding face
from one of the 6 different velocity channels. This approach only
requires the storage of 19 coefficients in all cases, and retains the
performance potential offered by the SPGrid framework.

7 RESULTS
We simulated a number of examples to demonstrate the effectiveness
of our framework. Each uses two or three levels of refinement,
although this is not a strict limitation. For rendering the liquid
surface, we used the fine level set wherever we had valid values,
otherwise we used the coarse level set. Figure 2 shows two sources
pouring water in a container, creating a thin sheet. The octree
topology is fine near the sources and coarser away from them, with

three levels of adaptivity. Figure 3 shows an example with dynamic
adaptation, where four sources pour water in a pool with a rotating
object. The octree topology is fine within a bounding box of the
object and the sources, and coarser elsewhere, with two levels of
adaptivity. The box enclosing the object is updated every frame, so
that it can track complex solid-fluid interactions. During advection,
whenever the mesh topology changes, we trace back from the new
mesh face locations, but perform interpolation into the old mesh,
thereby avoiding a separate mesh transfer step [Klingner et al. 2006].
Finally, Figure 8 shows river flow in a canyon, with three levels
of adaptivity. The thin geometry of this domain mandates more
smoothing effort near the boundary (10 Jacobi smoothing iterations,
as opposed to 3 in the other examples), increasing the cost of the
projection step.

Table 1 shows the memory bandwidth utilization for a streaming
copy kernel (for reference), the first order Laplacian of Setaluri et
al. [2014], our optimized second order Laplacian, and an unopti-
mized Laplacian that uses an explicit mesh near T-junctions to store
the stencil coefficients. These computations were performed on the
river data set from Figure 8. Our kernel achieves good performance
by exploiting the ghost cell mechanism of the SPGrid pyramid. Ta-
ble 2 shows the average timing breakdown of one time step for all
our examples. The memory footprint of our fine level set represen-
tation was 8.09 GB (543M voxels) for the twin source example from
Figure 2, 7.36 GB (493M voxels) for the rotating paddle example
from Figure 3, and 3.84GB (253M voxels) for the river example from
Figure 8. In spite of the exceptionally high resolution afforded in
the narrow band, SPGrid yields a storage footprint which is quite
acceptable for simulations of this scale. Finally, as Table 2 reveals,
maintenance of the narrow band is efficient enough to not be the
bottleneck, even though we rely on a serial Fast Marching method
for reinitialization.

In the supplemental material, we use analytical test cases in two
and three dimensions to provide numerical evidence that our projec-
tion technique achieves second order accuracy and our fastmarching
method achieves first order accuracy.

8 LIMITATIONS AND FUTURE WORK
Our proposed combination of a power diagram discretization, stor-
age using an SPGrid pyramid, and the use of a highly refined narrow
band level set for interface tracking exposes and exploits a num-
ber of opportunities for performance optimizations, but also incurs

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

Power Diagrams and Sparse Paged Grids for High Resolution Adaptive Liquids • 140:11

some conscious limitations. In this section, we highlight the most
notable limitations, and discuss whether they are intrinsic to our
approach, or a temporary exclusion from our scope that could be
amended without fundamental changes to our framework.
Our interface tracking scheme is expressly capable of capturing

geometric details at higher resolutions than its counterpart stored
on the power diagram. Since the dynamics are driven by the level
set as sampled onto the octree power diagram, sub-grid droplets or
air pockets may at times be overlooked by the simulation, leading to
non-physical motions such as the slender suspended splash in the
rotating paddle scenario. Therefore, a sub-grid treatment similar to
prior work [Bojsen-Hansen and Wojtan 2013; Goldade et al. 2016] is
called for. In addition, our interface tracking scheme uses first order
semi-Lagrangian advection and the fast marching method for reini-
tialization, both of which are known to be overly dissipative. In the
future, we would like to explore improved advection schemes, such
as FLIP [Zhu and Bridson 2005] or MacCormack [Selle et al. 2008],
and higher order accurate level set reinitialization. Reconstruct-
ing full velocities at tetrahedra circumcenters rather than nodes
and applying generalized barycentric interpolation over polyhe-
dra would also reduce dissipation [Elcott et al. 2007; Klingner et al.
2006]. Moreover, in principle, it is possible to use adaptivity even
for interface tracking while, for simplicity, we have restricted our
implementation to a single uniform grid. We are presently reini-
tializing the signed distance with a serial Fast Marching method
on the narrow band; alternative reinitialization schemes that admit
parallelism certainly merit attention in future work. Finally, given
that our method makes extensive use of the SPGrid data structure
to solve the Navier-Stokes equations, tracking the surface with a
high-resolution narrow band SPGrid level set was a natural and
convenient choice. Nevertheless, our underlying octree fluid solver
is not intrinsically tied to this choice, and we expect that it could
alternatively be paired with a purely particle- or mesh-based surface
tracking strategy if desired.
Thus far we have sought to simulate strictly large-scale single-

phase inviscid free surface flows, which leaves ample room for
future exploration of more specialized effects such as surface ten-
sion, contact-line dynamics, viscosity, multiple phases, solid-fluid
interaction, and so on. Some of these extensions should be straight-
forward; for example, explicit surface tension should involve only
a minor modification to the right-hand-side of the linear system
based on surface curvature [Enright et al. 2003].

As discussed in Section 4, edge neighbors in the octree may share
a face in the power diagram. We use three additional channels
associated with edges for storing velocities on these faces. These
channels only store meaningful values near T-junctions, resulting
in a non-optimal storage density. It is also possible to use the non-
graded approach of Losasso et al. [2006] in regions deep interior
to the liquid, and our power diagram discretization only near the
free surface to obtain a lower cost Laplace operator that still yields
a second order accurate pressure field. We have tested this idea on a
simple prototype and plan to include it in our simulation pipeline in
future work. Finally, we have consciously restricted our scope to a
grading scheme that mandates that a cell and all its neighbors span
only two levels of resolution; however, there exist weaker grading
rules that do not destroy the essential octree structure in the power

Streaming 1st Order 2nd order Unoptimized
Copy Laplacian Laplacian Laplacian
14.45 5.71 3.95 0.49

Table 1. Memory bandwidth utilization (in GB/sec) for streaming and stencil
operations run on an Intel Xeon E3-1241 at 3.5GHz.

diagram, and lifting this restriction would not prevent us from
using the ghost cell mechanism within the SPGrid framework either.
However, in the absence of this grading restriction, our encoding
and lookup scheme for local tessellations and stencils would not
apply. We look forward to investigating algorithmic paradigms for
more intricate adaptive topology patterns in future work.

REFERENCES
David Adalsteinsson and James A. Sethian. 1995. A fast level set method for propagating

interfaces. J. Comp. Phys. 118 (1995), 269–277.
Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. 2007. Adaptively

sampled particle fluids. ACM Trans. Graph. (SIGGRAPH) 26, 3 (2007), 48.
Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2013. Highly adaptive liquid simulations

on tetrahedral meshes. ACM Trans. Graph. (SIGGRAPH) 32, 4 (2013), 103.
Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A dimension-reduced pressure

solver for liquid simulations. Computer Graphics Forum (Eurographics) 34, 2 (2015),
473–480.

Franz Aurenhammer. 1987. Power diagrams: properties, algorithms, and applications.
SIAM J. Comput. 16, 1 (1987), 78–96.

Adam W. Bargteil, James F. O’Brien, Tolga G. Goktekin, and John A. Strain. 2006. A
semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1
(2006), 19–38.

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational
framework for accurate solid-fluid coupling. ACM Trans. Graph. (SIGGRAPH) 26, 3
(2007), 100.

Christopher Batty, Stefan Xenos, and Ben Houston. 2010. Tetrahedral embedded
boundary methods for accurate and flexible adaptive fluids. Computer Graphics
Forum (Eurographics) 29, 2 (2010), 695–704.

Morten Bojsen-Hansen and Chris Wojtan. 2013. Liquid surface tracking with error
compensation. ACM Trans. Graph. (SIGGRAPH) 32, 4 (2013), 79:1–79:10.

Robert Bridson. 2015. Fluid simulation for computer graphics, 2nd edition. A. K. Peters,
Ltd.

Tyson Brochu, Christopher Batty, and Robert Bridson. 2010. Matching fluid simulation
elements to surface geometry and topology. ACM Trans. Graph. (SIGGRAPH) 29, 4
(2010), 47.

Tyson Brochu and Robert Bridson. 2009. Robust topological operations for dynamic
explicit surfaces. SIAM J. Sci. Comput. 31, 4 (2009), 2472–2493.

Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F. O’Brien, and
Jonathan Richard Shewchuk. 2007. Liquid simulation on lattice-based tetrahedral
meshes. In Symposium on Computer Animation. ACM Press, 219–228.

Nuttapong Chentanez, Tolga G. Goktekin, Bryan E. Feldman, and James F. O’Brien.
2006. Simultaneous coupling of fluids and deformable bodies. In Symposium on
Computer Animation. ACM Press, 83–89.

Nuttapong Chentanez and Matthias Müller. 2011. Real-time Eulerian water simulation
using a restricted tall cell grid. ACM Trans. Graph. (SIGGRAPH) 30, 4 (2011), 82.

Nuttapong Chentanez and Matthias Müller. 2012. Mass-conserving Eulerian liquid
simulation. In Symposium on Computer Animation. 245–254.

Fig. 2 Fig. 3 Fig. 8
Time Step 80 58 81
Level Set Advection 26 14 14
Reinitialization 20 15 19
Velocity Advection 5 2 5
Projection 24 18 40
Velocity Extrapolation 4 3 2
Grid Adaptation N/A 5 N/A
Number of PCG iterations 5 4 10

Table 2. Average timing breakdown (in seconds) for all examples.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

140:12 • M. Aanjaneya et al.

Pascal Clausen, Martin Wicke, Jonathan Richard Shewchuk, and James F. O’Brien. 2013.
Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM
Trans. Graph. 32, 2 (2013), 17.

Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun.
2015. Power particles: an incompressible fluid solver based on power diagrams.
ACM Trans. Graph. (SIGGRAPH) 34, 4 (2015), 50.

Mathieu Desbrun and Marie-Paule Gascuel. 1996. Smoothed particles: a new paradigm
for animating highly deformable bodies. In Eurographics Workshop on Computer
Animation and Simulation. 61–76.

Christian Dick, Marcus Rogowsky, and Rüdiger Westermann. 2016. Solving the fluid
pressure Poisson equation using multigrid - evaluation and improvements. IEEE
TVCG 22, 11 (2016), 2480–2492.

Sharif Elcott and Peter Schröder. 2006. Building your own DEC at home. In ACM
SIGGRAPH Course Notes. 55–59.

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007.
Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007), 4.

Robert Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013a. An adaptive
discretization of incompressible flow using a multitude of moving Cartesian grids.
J. Comp. Phys. 254 (2013), 107–154.

Robert Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013b. Chimera grids for
water simulation. In Symposium on Computer Animation. ACM Press, 85–94.

Doug Enright, Stephen Marschner, and Ronald Fedkiw. 2002. Animation and rendering
of complex water surfaces. ACM Trans. Graph. (SIGGRAPH) 21, 3 (2002), 736–744.

Doug Enright, Duc Nguyen, Frédéric Gibou, and Ron Fedkiw. 2003. Using the particle
level set method and a second order accurate pressure boundary condition for
free surface flows. In Proceedings of the 4th ASME-JSME Joint Fluids Engineering
Conference. ASME, 337–342.

Bryan E. Feldman, James F. O’Brien, and Bryan M. Klingner. 2005. Animating gases
with hybrid meshes. ACM Trans. Graph. (SIGGRAPH) 24, 3 (2005), 904–909.

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-scale liquid
simulation on adaptive octree grids. IEEE TVCG 20, 10 (2014), 1405–1417.

Nick Foster and Ronald Fedkiw. 2001. Practical animation of liquids. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’01). 23–30.

Nick Foster and Dimitris Metaxas. 1996. Realistic animation of liquids. Graphical
Models and Image Processing 58, 5 (1996), 471–483.

Frédéric Gibou, Ron Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A second order
accurate symmetric discretization of the Poisson equation on irregular domains. J.
Comp. Phys. 176, 1 (2002), 205–227.

Abhinav Golas, Rahul Narain, Jason Sewall, Pavel Krajcevski, Pradeep Dubey, and Ming
Lin. 2012. Large-scale fluid simulation using velocity-vorticity domain decomposi-
tion. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6 (2012), 148.

Ryan Goldade, Christopher Batty, and Chris Wojtan. 2016. A practical method for
high-resolution embedded liquid surfaces. Computer Graphics Forum (Eurographics)
35, 2 (2016), 233–242.

Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling
water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH)
24, 3 (2005), 973–981.

Arthur Guittet, Mathieu Lepilliez, Sebastian Tanguy, and Frédéric Gibou. 2015a. Solving
elliptic problems with discontinuities on irregular domains: the Voronoi Interface
Method. J. Comp. Phys. 298 (2015), 747–765.

Arthur Guittet, Maxime Theillard, and Frédéric Gibou. 2015b. A stable projection
method for the incompressible Navier-Stokes equations on arbitrary geometries
and adaptive Quad/Octrees. J. Comp. Phys. 292 (2015), 215–238.

Nambin Heo and Hyeong-Seok Ko. 2010. Detail-preserving fully-Eulerian interface
tracking framework. ACMTrans. Graph. (SIGGRAPHAsia) 29, 6 (2010), 176:1—-176:8.

Jeong-Mo Hong and Chang-Hun Kim. 2005. Discontinuous fluids. ACM Trans. Graph.
(SIGGRAPH) 24, 3 (2005), 915–920.

Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. 2006. Effi-
cient simulation of large bodies of water by coupling two and three dimensional
techniques. ACM Trans. Graph. (SIGGRAPH) 25, 3 (2006), 805–811.

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.
2015. The affine particle-in-cell method. ACM Trans. Graph. (SIGGRAPH) 34, 4
(2015), 51.

Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. 2009. Stretching and wiggling
liquids. ACM Trans. Graph. (SIGGRAPH Asia) 28, 5 (2009), 120.

Theodore Kim and Ming C. Lin. 2007. Fast animation of lightning using an adaptive
mesh. IEEE TVCG 12, 2 (2007), 390–402.

Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien.
2006. Fluid animation with dynamic meshes. ACM Trans. Graph. (SIGGRAPH) 25, 3
(2006), 820–825.

Zuzana Krivá, Angela Handlovičová, and Karol Mikula. 2016. Adaptive cell-centered
finite volumemethod for diffusion equations on a consistent quadtree grid. Advances
in computational mathematics 42, 2 (2016), 249–277.

Michael Lentine, Mridul Aanjaneya, and Ronald Fedkiw. 2011. Mass and momentum
conservation for fluid simulation. In Symposium on Computer Animation. 91–100.

Michael Lentine, Matthew Cong, Saket Patkar, and Ronald Fedkiw. 2012. Simulating
free surface flow with very large time steps. In Symposium on Computer Animation.
107–116.

Michael Lentine, Wen Zheng, and Ronald Fedkiw. 2010. A novel algorithm for incom-
pressible flow using only a coarse grid projection. ACM Trans. Graph. (SIGGRAPH)
29, 4 (2010), 114.

Haixiang Liu, NathanMitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A scalable
schur-complement fluids solver for heterogeneous compute platforms. ACM Trans.
Graph. (SIGGRAPH) 35, 6 (2016), 201.

Frank Losasso, Ronald Fedkiw, and Stanley Osher. 2006. Spatially adaptive techniques
for level set methods and incompressible flow. Computers & Fluids 35, 10 (2006),
995–1010.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. ACM Trans. Graph. (SIGGRAPH) 23, 3 (2004), 457–462.

David F. Martin and Kelley L. Cartwright. 1996. Solving Poisson’s equation using adaptive
mesh refinement. Technical Report. EECS Department, University of California,
Berkeley. 19 pages.

Aleka McAdams, Eftychios Sifakis, and Joseph Teran. 2010. A parallel multigrid Poisson
solver for fluids simulation on large grids. In Symposium on Computer Animation.
65–74.

Michael L. Minion. 1996. A projection method for locally refined grids. J. Comp. Phys.
127, 1 (1996), 158–178.

Marek Misztal and Andreas Bærentzen. 2012. Topology-adaptive interface tracking
using the deformable simplicial complex. ACM Trans. Graph. 31, 3 (2012), 24.

MarekMisztal, Robert Bridson, Kenny Erleben, Andreas Bærentzen, and François Anton.
2010. Optimization-based fluid simulation on unstructured meshes. In VRIPHYS.
11–20.

Jeroen Molemaker, Jonathan M. Cohen, Sanjit Patel, and Jonyong Noh. 2008. Low
viscosity flow simulations for animation. In Symposium on Computer Animation.
9–18.

Patrick Mullen, Pooran Memari, Fernando de Goes, and Mathieu Desbrun. 2011. HOT:
Hodge-optimized triangulations. ACM Trans. Graph. (SIGGRAPH) 30, 4 (2011), 103.

Matthias Müller. 2009. Fast and robust tracking of fluid surfaces. In Symposium on
Computer Animation. ACM, New York, NY, USA, 237–245.

Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An efficient fluid-solid coupling
algorithm for single-phase flows. J. Comp. Phys. 228, 23 (2009), 8807–8829.

Michael B. Nielsen and Robert Bridson. 2016. Spatially adaptive FLIP fluid simulations
in Bifrost. In ACM SIGGRAPH talks. 41.

Blair Perot and V. Subramanian. 2007. Discrete calculus methods for diffusion. J. Comp.
Phys. 224, 1 (2007), 59–81.

Stéphane Popinet. 2003. Gerris: a tree-based adaptive solver for the incompressible
Euler equations in complex geometries. J. Comp. Phys. 190, 2 (2003), 572–600.

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.
An unconditionally stable MacCormack method. SIAM J. Sci.Comput. 35, 2-3 (2008),
350–371.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid:
A sparse paged grid structure applied to adaptive smoke simulation. ACM Trans.
Graph. (SIGGRAPH Asia) 33, 6 (2014), 205.

James Sethian. 1999. Level set methods and fast marching methods. Cambridge University
Press.

James A. Sethian and Alexander Vladimirsky. 2000. Fast methods for the Eikonal
and related Hamilton-Jacobi equations on unstructured meshes. Proceedings of the
National Academy of Sciences 97, 11 (2000), 5699–5703.

Adamandios Sifounakis, Sangseung Lee, and Donghyun You. 2016. A conservative
finite volume method for incompressible Navier-Stokes equations on locally refined
nested Cartesian grids. J. Comp. Phys. 326 (2016), 845–861.

Funshing Sin, Adam W. Bargteil, and Jessica K. Hodgins. 2009. A point-based method
for animating incompressible flow. In Symposium on Computer Animation. ACM
Press, 247–255.

Barbara Solenthaler and Markus Gross. 2011. Two-scale particle simulation. ACM
Trans. Graph. (SIGGRAPH) 30, 4 (2011), 81.

Jos Stam. 1999. Stable fluids (SIGGRAPH ’99). 121–128.
Tetsuya Takahashi and Ming C. Lin. 2016. A Multilevel SPH Solver with Unified Solid

Boundary Handling. Computer Graphics Forum 35, 7 (2016), 517–526.
Chris Wojtan, Nils Thuerey, Markus Gross, and Greg Turk. 2009. Deforming meshes

that split and merge. ACM Trans. Graph. (SIGGRAPH) 28, 3 (2009), 76.
Jihun Yu, Chris Wojtan, Greg Turk, and Chee Yap. 2012. Explicit mesh surfaces for

particle based fluids. Computer Graphics Forum (Eurographics) 31, 2 (2012), 815–824.
Xinxin Zhang and Robert Bridson. 2014. A PPPM fast summation method for fluids

and beyond. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6 (2014), 206.
Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fedkiw. 2013. A

new grid structure for domain extension. ACM Trans. on Graph.(SIGGRAPH) 32, 4
(2013), 63.

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph.
(SIGGRAPH) 24, 3 (2005), 965–972.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 140. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related Work
	2.1 SPGrid arrays and sparse uniform grid pyramids

	3 Method overview
	4 Pressure projection on modified octrees
	4.1 Power diagram discretization
	4.2 Pyramid of sparse uniform grids
	4.3 Multigrid preconditioner

	5 Interventions in the simulation pipeline
	6 Topology encoding and operator storage
	6.1 Encoding of local power diagram topology
	6.2 Retrieval of local Delaunay tetrahedralizations
	6.3 Hierarchical evaluation of differential operators

	7 Results
	8 Limitations and future work
	References

