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Fig. 1. Sediment transport: Our method can animate intricate two-way coupled particle-laden flows such as sediment transport in liquid.

In this paper, we present a mixed explicit and semi-implicit Material Point
Method for simulating particle-laden flows. We develop a Multigrid Precon-
ditioned fluid solver for the Locally Averaged Navier Stokes equation. This
is discretized purely on a semi-staggered standard MPM grid. Sedimentation
is modeled with the Drucker-Prager elastoplasticity flow rule, enhanced by
a novel particle density estimation method for converting particles between
representations of either continuum or discrete points. Fluid and sediment
are two-way coupled through a momentum exchange force that can be easily
resolved with two MPM background grids. We present various results to
demonstrate the efficacy of our method.
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1 INTRODUCTION
Recently, multi-phase multi-material simulations are increasingly
gaining attention from computer graphics researchers. Simulat-
ing various phases or materials in a unified framework is particu-
larly favored. Existing work includes coupled Lagrangian particle
simulation with Position Based Dynamics (PBD) [Macklin et al.
2014], water-gas mixtures [Nielsen and Østerby 2013] with an Euler-
ian method, solid-fluid phase-change [Stomakhin et al. 2014] and
porous granular media [Pradhana-Tampubolon et al. 2017] with Ma-
terial Point Method (MPM), as well as interactive solids and fluids
based on the mixture model with Smoothed Particle Hydrodynamics
(SPH) [Yan et al. 2016].

Most of the existing approaches are based on continuum mixture
theory [Manninen et al. 1996]. The continuum assumption for each
material phase is essential for simulations of macroscopic porous
media (e.g., landslides and liquid blending). However, it may fail
to capture the correct behavior of particle-laden flows where the
solid phase is on a relatively small scale. Note that particle-laden
sediment flow is ubiquitous in natural systems. Typical examples
include sediment transport, sedimentation, volcano eruption, dune
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Fig. 2. Dune migration: Two-dimensional simulations of wind blowing sand. Left: A one-way coupled simulation where sand does not affect wind fails to
produce plausible dynamics. Right: Two-way coupled simulation from our method captures the characteristic behavior of a sand dune migrating forward.

migration by erosion with ripples, and dust storms. The signifi-
cance of understanding and simulating these phenomena is also
recognized in many engineering applications, such as granular ma-
terial fluidization [van der Hoef et al. 2006] and coastal erosion
prediction [Sun and Xiao 2016a].
Our method treats fluid as a continuum and solid sediment as

being comprised of small immiscible particles. The majority of engi-
neering literature discretizes these sedimentation problems based
on a combination of an Eulerian fluid solver and a Discrete Element
Method (DEM) particle solver, which requires velocity interpolation
between the two different discretizations to handle the momentum
exchange between them. DEM is also too expensive for practical
animation in collision-heavy dense flow scenarios. Our framework
employs the MPM discretization for both the fluid phase and the
solid phase to mitigate these problems.

In standard DEM, each particle is associated with a rigid sphere,
and thus trivially represents a discrete spherical body with transla-
tional and rotational motions. Even for a collection of many particles,
DEM does not make any continuum assumption. In contrast, each
MPM particle represents a patch of the continuum and serves as
a quadrature point for the spatial discretization of the continuous
fields. Furthermore, traditional MPM cannot preserve angular mo-
mentum. In this paper, we tackle both difficulties. We use the Affine
Particle-In-Cell (APIC) [Jiang et al. 2015] method to grant each par-
ticle an affine velocity field which enables the representation of
local rigid rotations. Second, we propose a density criterion to allow
certain MPM particles to behave as discrete debris separated from
the continuum body. As a result, each MPM particle in the sediment
can essentially act as a separate spherical body, while the continuum
elastoplastic relationship is only activated for clumps of them.

In contrast to the recentwork onwet sand by Pradhana et al. [2017],
which relied on an intricate modification to the sand elastoplasticity
model and is limited in the use of weakly compressible fluids, our
work does not require an ad-hoc modification to the sand consti-
tutive model and supports an incompressible fluid solver. Unlike
the augmented MPM scheme by Stomakhin et al. [2014], our incom-
pressible fluid solver discretizes velocity degree of freedoms on a
semi-staggered grid, thus eliminating the computationally costly

MPM discretization on a MAC grid which requires the use of cubic
kernels. Xiao and Sun [2011] used constant interpolation to approx-
imate the fluid velocities at solid particle positions, introducing
dissipation; instead, our framework circumvents such interpolation.

We summarize our contributions as follows:
• A unified solver for purely incompressible fluids and particle-
laden-flows using MPM background grids.
• A sub-stepping scheme with accurate momentum exchange
for the mixture of solid particles and fluids, allowing for a
larger time-step in the fluid solver.
• A density evaluation strategy for converting particles be-
tween continuum clumps and discrete debris.
• A semi-staggered semi-implicit MPM discretization for Lo-
cally Averaged Navier-Stokes with a variable coefficientmulti-
grid preconditioner.

We demonstrate the efficacy of our method with various sediment-
fluid interaction examples.

2 RELATED WORK
While earlier work in graphics was centered on certain types of
physical materials or phenomena, more recent attention has been
focused on the simulation of multi-phase multi-material interac-
tions. Teng et al. [2016] simulate two-way coupled deformable solids
and incompressible flow. Nielsen and Østerby [2013] used a two-
continua mixture model for simulating water droplets in the air,
discretized in an Eulerian fashion. Macklin et al. [2014] proposed a
unified Lagrangian particle based solid-liquid-gas coupling frame-
work with PBD [Müller et al. 2007]. Müller et al. [2005] were the
first to simulate fluid-fluid interaction in SPH. Peer et al. [2015]
simulated multiphase viscous SPH fluid with pressure and cohesion
forces for their interaction. Ren et al. [2014] simulated both misci-
ble and immiscible fluids with a mixture model. Yang et al. [2015]
further took a Helmholtz Free Energy based model to achieve im-
proved performance. These SPH frameworks were extended in Yan
et al. [2016] to solids and granular materials, and also by Yang et
al. [2017] to a variety of fluid-solid interactions. Daviet simulated
granular flow in Newtonian fluid [2016] in two dimensions.
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The existance of solid-fluid mixture is also common in porous
flow and solid wetting. Lenaerts et al. [2008] simulated fluids in
porous deformable media with an Eulerian discretization of Darcy
flux. Their approach was extended to mixing fluids and granular
materials in [Lenaerts and Dutré 2009]. Rungjiratananon et al. [2008]
simulated wet sand with coupled SPH and DEM. They also captured
capillary flow in anisotropic permeable hair in [Rungjiratananon
et al. 2012]. Fei et al. [2017] adopted a multi-scale model for wet hair,
where they used Affine Particle-In-Cell (APIC) [Jiang et al. 2015]
for water and a discrete rod model [Bergou et al. 2008] for the solid.
Liquid is also simulated with APIC in our framework, although we
will discretize it on a semi-staggered grid.

In computer graphics, Wojtan et al. [2007] simulated erosion,
sedimentation, and corrosionwith Eulerian fluids and level set solids.
Krištof et al. [2009] used an SPH-based fluid scheme tomodel erosion
and avoided the direct simulation of sediments by introducing the
boundary particles to represent the sediment exchange with the
terrain.
Our method is based on the Material Point Method (MPM) [Sul-

sky et al. 1995], which has recently been popularized in computer
graphics for simulating granular materials [Daviet and Bertails-
Descoubes 2016; Klár et al. 2016; Stomakhin et al. 2013], viscoplas-
ticity [Ram et al. 2015; Yue et al. 2015] and cloth [Jiang et al. 2017].
MPM was also used for simulating solid-incompressible fluid cou-
pling in [Stomakhin et al. 2014] and porous sand-water mixture in
[Pradhana-Tampubolon et al. 2017]. We compare the feature sets of
these methods in Table 1.
There is a large body of related work in Engineering literature

on simulating particle-laden flows. One of the standard approaches
is to couple mesh-based Eulerian fluids with particle systems de-
scribed with the discrete element method (DEM). The pioneering
work of Xu and Yu [1997] modeled gas-solid flow in a fluidized bed
by combining the Discrete Particle Method (DPM) and standard
Computational Fluid Dynamics (CFD) solvers. Li et al. [1999] ex-
tended it to gas–liquid–solid systems. Xiao and Sun [2011] applied
a similar idea to general particle-laden flows and recently released
a general-purpose, open-source CFD-DEM coupling solver called
SediFoam [2016b]. They treated the fluid-particle interaction term
implicitly and this resulted in a highly stable integration scheme.
Snider [2001] considered dense particle fluid flows with multiphase
Particle-In-Cell (MPIC). Fluid-particle interaction was also achieved
with coupled SPH and DEM by Robinson et al. [2011]. More recently
Mutabaruka and Kamrin [2017] simulated particle-laden dynam-
ics with lattice Boltzmann fluids and DEM. Narain et al. [2010]
and Daviet and Bertails-Descoubes [2016] investigated free-flowing

Table 1. Comparing Augmented MPM (AMPM) [Stomakhin et al. 2014],
Multi-species MPM (MMPM) [Pradhana-Tampubolon et al. 2017] and our
method for simulating the mixture of granular solid particles and fluids.

AMPM[2014] MMPM[2017] Ours
Reducible to incompressible flow (fluid) ✓ ✗ ✓

Unmodified hyperelasticity (solid) ✓ ✗ ✓
Discrete debris support (solid) ✗ ✗ ✓

Saturation dependent cohesion (solid) ✗ ✓ ✗
Multi-phase miscibility ✗ ✓ ✓

Mixed integration ✗ ✗ ✓

Fig. 3. Debris flow:We simulate water-saturated debris flow, which is a
common occurrence of particle-laden flows in nature.

granular media as disperse grains in low density regions. Our strat-
egy for treating debris sediment is similar to the approach by Sachith
and Kamrin [2015]. Their approach associates a unilateral pressure
with each particle by comparing their density with a threshold and
enforcing a disconnected stress-free state when the density is low.
The main difference is that they evolve material point volume using
velocity gradient over time, while we always evaluate the current
particle “clumpiness” based on world space locations which avoids
accumulated numerical advection error in highly dynamic scenarios.

3 CONTINUOUS EQUATIONS
Here we describe the governing equations for both fluid and sedi-
ment materials in particle-laden flows. We will use superscript f for
fluid and s for sediment. Fluid and sediment velocities are denoted
with u and v respectively.

3.1 Fluid
In particle-laden flows, the fluid has to satisfy the impermeable
boundary conditions enforced by discrete particles. However, it is
impossible to exactly resolve these boundaries in the presence of a
large number of sediment particles, unless an extremely high fluid
resolution is used. We instead incorporate the Locally Averaged
incompressible Navier-Stokes theory proposed by Anderson and
Jackson [1967] to model the fluid motion. As in other previous
work on multiphase simulation, each spatial point is simultaneously
occupied by different phases or materials. Note that the use of
Locally Averaged Navier-Stokes in our work essentially shares the
same form for describing the fluid with the mixture model used by
Nielsen and Østerby [2013]. Specifically, the mass equation for fluid
is given by

∂(ϵρf )

∂t
+ ∇ · (ϵρf u) = 0, (1)

and the momentum equation is

∂(ϵρf u)
∂t

+ ∇ · (ϵρf u ⊗ u) = −ϵ∇p + ϵρf g + f f d , (2)

where ϵ , ρf , u, p, g, and f f d are the fluid volume fraction, fluid
intrinsic density, fluid velocity, pressure, the gravitational constant,
and the fluid drag force density respectively. We use the superscript
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f d , sd and se for fluid drag force, sediment drag force and sediment
elastic force respectively. Note that f f d and fsd denote the inter-
action drag force of the sediment on the fluid and force of the fluid
on the sediment. As such, they obey f f d = −fsd . Combining Eq. (1)
and Eq. (2), we arrive at

∂u
∂t
+ (u · ∇)u = −

1
ρf
∇p + g +

1
ϵρf

f f d . (3)

3.2 Sediment
In the scale of particle-laden flows, granular solid materials are usu-
ally treated as discrete spherical bodies. This perspective eliminates
the need to formulate governing equations for the volume fraction
scaled solid material or for the entire mixture as in [Yan et al. 2016].
Normally in a CFD-DEM coupling framework such as [Sun and
Xiao 2016b], Newton’s second law would be directly enforced on
the discrete spherical particles to describe their translational and ro-
tational motions. However, in order to support the massive amount
of dense particle suspensions, it is preferable to formulate the sedi-
ment governing equations through continuum mechanics, with the
extra drag force density term fsd :

∂(δρs )

∂t
+ ∇ · (δρsv) = 0, (4)

∂(δρsv)
∂t

+ ∇ · (δρsv ⊗ v) = δ∇ · σ s + δρsg + fsd , (5)

where δ , ρs , vs , and σ s denote sediment volume fraction, sediment
intrinsic density, sediment velocity, and the Cauchy stress describing
the mechanical responses inside solid clumps. From mixture theory,
the volume fraction of fluid and sediment obeys ϵ + δ = 1. In the
case of debris in the air without liquid, we have δ = 1 and ϵ = 0.

As previously mentioned, we treat a clump of sediment particles
as an elastoplastic material which obeys Drucker-Prager plasticity.
Our density approximationmethod provides a measure of the spatial
distribution of sediment particles. As a sediment particle is sepa-
rated from its neighbor, it is no longer subject to the elastoplastic
constitutive law. We discuss the strategy we adopt for this density
evaluation in more detail in Sec. (§4.5.4).

3.3 Mixture incompressibility and interaction term
From the assumption that ϵ + δ = 1, we can combine Eq. (1) and
Eq.(4) to get

∇ · (ϵu + δv) = 0. (6)

We would like to note that in this work, the interaction terms
between the fluid and the sediment are limited to drag forces (fsd

and f f d ), which is a point of departure from [Anderson and Jack-
son 1967]. The exact model used is described in Sec. (§4.3). This
model does not include the effect of buoyancy (necessary for cap-
turing liquefication phenomena) and lift force. A caveat is that to
conserve momentum, we only apply the drag force model to the
sediment whereas in the fluid step the drag force is computed from
the exchanged momentum accumulated during the sediment step.

4 METHOD
We discretize the velocity degrees of freedom and the forces of each
constituent with the help of an MPM grid with grid-spacing ∆x .
We will use subscript i for quantities stored at grid node i . We take
a semi-staggered discretization similar to [Zhang et al. 2017] for
the fluid momentum equation. Once we commit to simulating sand
using MPM, it is natural to simulate fluid on a semi-staggered grid
since both fluid and sediment will be discretized on colocated nodes.
Another advantage of this is to avoid the need to extrapolate velocity
on the fluid surface, which is needed with FLIP. As a result, pressure
and velocity divergence are stored at cell centers with subscript c .
We use subscript f to denote variables on the faces. Both fluid and
sediment materials are tracked and advected with MPM particles,
which will be denoted with subscript p. The physical dimension is
denoted by d ∈ {2, 3}.

4.1 Algorithm overview
We use a semi-implicit discretization for the fluid step and a sym-
plectic Euler time integration for the sediment step. The fluid can
thus take a larger time step than the sediment. We use ∆t f ,n to de-
note a fluid time step from tn to tn+1 =: tn + ∆t f ,n . We divide one
sediment timestep into K substeps, i.e.

∑K
k=1 ∆t

s,nk = ∆t f ,n . Note
that both time steps are chosen to satisfy the CFL condition [Stom-
akhin et al. 2013]. We summarize the essential steps in our method
below and provide an illustration in Fig. 5.

First we describe a fluid step from tn to tn+1. We use APIC [Jiang
et al. 2015] with a multi-linear kernel for particle-grid transfers.

(1) Particles to grid: Transfer fluid particle massmf
p and mo-

mentum (mu)np to the grid and divide the mass, giving nodal

massmf ,n
i and velocity uni .

(2) Apply forces:Add explicit drag force and gravity to compute
the intermediate velocities u∗i ← uni on the background grid.

(3) Pressure projection: Solvemixture pressure projectionwith
proper boundary conditions to correct the nodal velocities
ûn+1i ← u∗i so that Eq. (9) is satisfied.

(4) Grid to particles: Particles get velocities un+1p (and APIC
coefficients) by interpolating from ûn+1i . Advection is done
as xf ,n+1p = xf ,np + ∆t f ,nun+1p .

Once we are done with the fluid step, we then integrate the sedi-
ment governing equations from tn to tn+1 (equivalently tn0 , ..., tnK )
with symplectic Euler. Multiple sub-steps are usually required since
sediment (which is similar to dry sand) has a considerably high
Young’s modulus which imposes a strong time step restriction. We
use APIC with the quadratic B-spline kernel which is optimized, as
in [Gao et al. 2017], for particle-grid transfers. We use the notation
Ni (x

s,nk
p ) as the evaluation of the kernel centered at grid node i at

position xs,nkp . In each sub-step from tnk to tnk+1 , the procedures
are

(1) Particles to grid: Transfer sediment particle massms
p and

momentum (mv)nkp to the grid and then average to get nodal
massms,nk

i and velocity vnki . We also approximate mass gra-
dient on grid nodes with (∇ms,nk ) (xi ). Nodal sediment vol-
ume fraction δnki is also updated (§4.5.1).
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Fig. 4. Hydraulic jump and sediment transport: A mixture of water and sediment being poured into a thin channel with a cylindrical obstacle in the
middle. The top figure uses an RPIC ratio of 0.2 (and a smaller gravity value), creating a more turbulent flow, while the bottom figure uses an RPIC ratio of 0.4,
creating a more laminar flow.

(2) Apply forces:We compute the elastic force, fluid drag force,
and gravity on the grid and update grid velocities based on
these forces, i.e. v̂nk+1i ← vnki . Note that the drag forces
conserve total momentum of the fluid-sediment system. We
show more details in Sec. (§4.3.2). Next, we apply boundary
conditions according to [Stomakhin et al. 2013], i.e. vnk+1i ←

v̂nk+1i (§4.5.2).
(3) Update particles’ states: Particles’ velocities and positions

are updated by interpolation from the grid (§4.5.3).
(4) Strain and representation update: Particle deformation

gradients Fnk+1p are updated using the Drucker-Prager plastic
flow return mapping [Klár et al. 2016] with volume correction
as proposed by [Pradhana-Tampubolon et al. 2017]. We also
evaluate the world space sediment particle density ρs,nk+1p to
determine whether a particle should be treated as being part
of the continuum or as a discrete debris (§4.5.4).

4.2 Volume fraction
Sediment particles are extremely stiff elastically, and conserve vol-
ume during the non-associative Drucker-Prager plastic flow [Klár
et al. 2016]. In contrast to traditional MPM algorithms, we assume
that the volume of each particle almost remains unchanged during
the simulation (V s,nk

p = V s,0
p where V s,0

p is the original volume).

Volume fraction of sediment is then given at each node as :

δ
nk
i = min



δmax,

V
s,nk
i

∆xd



, (7)

where V s,nk
i =

∑
p V

s,nk
p Ni (x

s,nk
p ). The value of δmax is chosen for

numerical stability (δmax ∈ [0.5, 0.8] in all of our examples). The
corresponding nodal fluid volume fraction is then ϵni = 1 − δn0

i ∈

[1 − δmax , 1]. Note that ϵni = 1 if ms,n0
i = 0. In the absence of

sediment particles, our locally averaged fluid discretization (§4.4.2)
reduces to the standard incompressible flow discretization from
[Zhang et al. 2017].

4.3 Drag force
4.3.1 On sediment. In contrast to CFD-DEM approaches where

particle-wise drag forces are evaluated by interpolating fluid veloc-
ities to sediment locations, MPM allows us to directly apply drag
forces to grid nodes. Corresponding to the drag force density fsd

in the continuum equation, we use a drag force model proposed by
Di Felice [1994] in a discrete setting. On grid nodes where fluid and
sediment materials are present we compute

fsd,nki =
1
2
ci (ϵ

n
i )
−χ ρf A

s,nk
i |un+1i − vnki |(u

n+1
i − vnki ), (8)
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Fig. 5. Algorithm step: The top row illustrates the fluid step, where we perform pressure projection to solve for the new velocity on the grid. The result of
this computation is then used in the sedimentation step, illustrated in the bottom row. Note that for a single fluid step, there are multiple (explicit) MPM
sediment sub-steps. The drag forces from each of the sediment sub-steps are accumulated to compute f f d for the fluid step.

with ci and χ denoting the empirical coefficient and exponent re-
spectively. For high Reynolds number fluids, χ = 3.7 and ci =
0.39. The term A

s,nk
i is the cross-sectional area of an imaginary

spherical geometry, given by A
s,nk
i = 2

(
V
s,nk
i /π

)1/2
in 2D and

A
s,nk
i = π

(
3V s,nk

i /(4π )
)2/3

in 3D. This term guarantees nodes
with tiny mass will receive a tiny force, thus avoiding potential
numerical instabilities. In practice we adjust ci for controlling the
overall strength of the drag force. This drag force model is more
suitable for particle laden flows and differs from the model used by
Pradhana et al. [2017].

4.3.2 On fluid. As we proceed from tn0 to tnK , the total momen-
tum change on the sediment is ∆Psd,ni =

∑K
k=1 f

sd,nk
i ∆ts,nk . To

enforce total momentum conservation in the fluid-sediment system,
we set f f d,ni = −∆Psd,n−1i /∆t f ,n when we apply the drag force
to fluid. As a result ∆Pf d,ni = −∆Psd,n−1i is always satisfied, i.e.

Fig. 6. Volume fraction: In this point of view, water cannot enter into
sediment. The node at the center represents 70% fluid and 30% sediment.

any momentum change to the sediment caused by the drag force is
always negated and applied to the fluid in the upcoming fluid step.

4.4 Fluid
4.4.1 Splitting. We apply the standard splitting treatment of

fluid simulation (cf. [Bridson 2008] for details) to Eq. (3) to get
separate steps, which includes advection, application of external
forces, pressure projection and velocity correction. Here we focus on
the grid solve. Particle-grid transfer steps are described in Sec. (§4.1).

Advection. In hybrid particle-grid fluid solvers, the nodal veloci-
ties are transferred from fluid particles, which have been advected
at the end of the previous time step through particle advection. In
other words, there is no additional advection required on the grid
in this new cycle.

External forces. This step includes the application of both drag
forces from sediment particles and gravity to get the intermediate

velocities u∗i = uni +
(
f f d,ni

mf ,n
i

+ g
)
∆t . Note that our method is explicit

on the drag force and uses f f d,ni directly.

Pressure projection. We adopt a semi-implicit discretization to
rewrite Eq. (6) as

∇ · (ϵni u
n+1
i ) = −∇ · (δn0

i vni ), (9)

where the divergence of volume fraction weighted sediment veloci-
ties is treated explicitly. This allows us to combine it with

∂u
∂t
+

1
ρ
∇p = 0
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Fig. 7. Volume gain problem: Previous MPM granular methods can introduce volume gain for highly dynamic scenarios. [Pradhana-Tampubolon et al.
2017] proposed a method to mitigate this volume gain effect to a certain extent. Our method successfully resolves this problem.

to derive a variable coefficient Poisson’s equation for the fluid pres-
sure, namely

−
∆t

ρf
∇ · (ϵnf ∇p) = −∇ · (δ

n0
i vni ) − ∇ · (ϵ

n
i u
∗
i ), (10)

where both ϵnf and ∇p are discretized at cell faces. Considering that
ϵnf is always positive, Eq. (10) corresponds to a symmetric positive
(semi-)definite system.

Velocity correction. After the pressure values are solved at cell
centers, they can be used to correct fluid velocities as

ûn+1i − u∗i
∆t

= −
1
ρf
∇p, (11)

where ûn+1i is further transferred back to particles using APIC (§4.1).

4.4.2 A Semi-staggered Discretization. As discussed in Sec. (§1),
constructing an incompressible solid-fluid coupling solver on a fully
staggered MAC grid as done by Stomakhin et al. [2014] would re-
quire multiple axis-independent MPM transfers between particles
and cell faces with a cubic kernel. To avoid this overhead, we adopt

Fig. 8. Glass flush:Water is poured onto sediment in a glass. The overflow
of water transports the sediment out of the glass.

the recently proposed semi-staggered MPM incompressible fluid
discretization [Zhang et al. 2017] and adapt it to solve the Locally
Averaged Navier-Stokes with a variable coefficient multigrid pre-
conditioner.

We first summarize the MPM discretization for the pressure solve
in a pure fluid pipeline as in [Zhang et al. 2017]. A standard pressure
solve can be described by

−
∆t

ρ
∇ · (∇p) = −∇ · u. (12)

Pressuresp are stored at cell centers, while all velocities are stored at
cell nodes and are transferred between MPM particles and the back-
ground grid via the standard multi-linear kernel with FLIP [Brack-
bill and Ruppel 1986]. We use the angular momentum conserving
APIC [Jiang et al. 2015] instead for stability and low dissipation. We
further adopt the RPIC damping as described in [Jiang et al. 2017] as
a controllable artificial viscosity for changing liquid behavior. The
left-hand side of Eq. (12) can be discretized with a standard 7-point
Laplacian stencil. For the right-hand side, the standard way to com-
pute the divergence of velocity in the semi-staggered discretization
is to first compute the partial derivatives on the edges and then
average them to the cell center. Zhang et al. [2017] compute this
differently by directly applying the divergence operator to the inter-
polated velocity which is then transferred to the weighting function,
ending up with the identical form. It is well known that this semi-
staggered discretization causes spurious hourglass velocity modes
which cannot be eliminated by the pressure projection. We mitigate
this problem by using an hourglass damping as proposed by Zhang
et al. [2017].

Ghost pressure. We mark a cell to be a water cell whenever there
is a water particle present in the cell, and mark a cell to be Neumann
when the cell center is inside an object or a wall. All other cells are
air (Dirichlet) cells.

We use a simplified ghost pressure treatment [Gibou et al. 2002]
to get a smooth free surface without tracking a level set or doing
reconstruction from particles. One popular interpretation of the
ghost pressure method is to compute the pressure gradient using a
more accurate distance from the cell center to the free surface θ∆x
(cf. Fig. 9(a)), instead of the distance between two cell centers ∆x .
We first identify the water particle closest to the face separating
the water cell and the air cell. We then assign a sphere of radius
∆x
2 to the particle to define an axis-aligned free surface and the
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Fig. 9. Simple ghost pressure computation: Left: With a more accurate
free-surface representation, e.g. using level set, one can compute θ . Right:
We propose a simplified way to compute θ even without the presence of a
level set.

corresponding θ (illustrated in Fig. 9(b)). It can be shown that when
the water particle crosses the cell, this new free surface is continuous
and passes through the air cell center; thus this scheme is free from
cell-crossing discontinuity artifacts.

Adaptation to the mixture pipeline. For solving the mixture pro-
jection Eq. (10), we need to compute the divergence of the volume-
fraction-averaged mixture velocity: û = δn0

i vni + ϵ
n
i u
∗
i . It is also

located at cell nodes, so the divergence operator remains the same.
Moreover, the 7-point stencil becomes a variable coefficient Lapla-
cian ∇ · (ϵnf ∇p). ϵ

n
f is usually stored at the cell faces to be collocated

with the standard finite difference pressure gradient. Instead, we
choose to interpolate nodal water volume fractions ϵni to cell cen-
ters to store them as ϵnc and compute the face average whenever
needed. In this way, the system to be solved remains symmetric.
This choice also simplifies the definition of the restriction operator
for the volume fraction in the multigrid preconditioner as discussed
below.
Notice that the velocity correction Eq. (11) remains the same

as in the standard pure fluid pipeline [Zhang et al. 2017]. Pressure
gradients are first computed for each face; then theweighted average
of these is used to update the nodal velocities. The face weight is
set to be one whenever that face belongs to a water cell; otherwise
it is set to be zero.

A variable coefficient multigrid preconditioner. Amultigrid precon-
ditioner is utilized to improve the convergence rate of the conjugate
gradient solver. Since the fluid volume fraction term ϵnf is confined
within a narrow range (due to clamping), we are able to slightly
modify the technique proposed by McAdams et al. [2010] to achieve
a reasonable convergence acceleration. In the multigrid V-cycle, two
operators, namely the prolongation and restriction operators, are
defined to act on the pressure degrees of freedom. The restriction
operator averages the finer data to be more coarse, and the prolonga-
tion operator interpolates finer values from the coarser grid. During
each iteration, the pressures at each level are updated. In contrast,
volume fraction coefficients only need to be restricted from finer
levels to coarser levels once because they do not act as real degrees
of freedom and can be re-used during the whole V-cycle.

Fig. 10. Pile: Top: Pure sediment particles form a pile with static friction.
Bottom: By injecting liquid, the pile collapses and interacts with the fluid.

As mentioned, although ϵnf is required to solve the variable coeffi-
cient Poisson equation, we choose to store the volume fraction at cell
centers and use them to compute ϵnf whenever needed. This choice
preserves the symmetry of the system. Furthermore, the restriction
of volume fractions can be computed by averaging the interior cells.
Our method differs from McAdams et al. [2010] in that we do not
average values from all finer cells with zeros substituted into non-
interior cells. With this modification, we make sure that when all
of the volume fractions are one, the variable coefficient multigrid
preconditioner can transform back to the constant coefficient case.

4.5 Sediment
The following sections describe each of the steps involved in ad-
vancing the states of the sediment particles from sub-step nk to
nk+1, with 0 ≤ k < K .

4.5.1 Particles to Grid. Following [Klár et al. 2016], we transfer
mass and momentum from particles to the grid using quadratic basis
function according to

m
s,nk
i =

∑
p

ms
pNi (x

s,nk
p ), (13)

(mv)nki =
∑
p

ms
pNi (x

s,nk
p )

(
vnkp +

4
(∆x )2

Bs,nkp (xi − x
s,nk
p )

)
,

(14)

where the APIC Bs,nkp is originally set to zero and is updated at each
substep according to Eq.(21). This is an APIC transfer [Jiang et al.
2015], with the factor 4/(∆x )2 applied to a quadratic kernel. The

velocity on the grid is then computed as vnki =
(mv)

nk
i

m
s,nk
i

.

In addition to this standard MPM transfer, we also compute mass
gradients on grid nodes which will be used later in our particle
density approximation, namely

(∇ms,nk ) (xi ) = −
∑
p

ms
p∇Ni (x

s,nk
p ). (15)

Furthermore, we update the nodal sediment volume fraction accord-
ing to Eq.(7) during the transfer.
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4.5.2 Update grid momentum and boundary conditions. In this
step, we update the velocity vnki → v̂nk+1i by taking into account
the drag force in regions where the fluid and sediment materials
overlap along with the elastic forces from the sediment constitutive
law. The drag force is given by Eq.(8). The elastic force is computed
as in [Klár et al. 2016]:

fse,nki = −
∑
p

V 0
p

(
∂ψ

∂F
(Fnkp )

)
(Fnkp )⊤ ∇Ni (x

s,nk
p ), (16)

with
∂ψ

∂F
(F) = U

(
2µΣ−1 ln Σ + λ tr(ln Σ)Σ−1

)
V⊤, (17)

where F = UΣV⊤ is the SVD of F. The parameters λ and µ are the
Lamé coefficients. The velocity update on the sediment grid is given
by

m
s,nk
i v̂nk+1i =m

s,nk
i vnki + ∆t

(
fsd,nki + fse,nki +m

s,nk
i g

)
. (18)

Finally, we apply the boundary conditions following [Stomakhin
et al. 2013] to get the final update on the grid vnk+1i ← v̂nk+1i .

4.5.3 Grid to particles. In this step, we update the velocity, posi-
tion, and Bs,nk+1p of each particle following [Jiang et al. 2015]:

vnk+1p =
∑
i

Ni (x
s,nk
p )vnk+1i , (19)

xs,nk+1p = xs,nkp + ∆ts,nk vnk+1p , (20)

Bs,nk+1p =
∑
i

Ni (x
s,nk
p )vnk+1i (xi − x

s,nk
p )⊤. (21)

4.5.4 Strain update with density-based projection. To update the
deformation gradient, we first compute

Fnk+1p = *
,
I + ∆t

∑
i
vnk+1i ∇Ni (x

s,nk
p )⊤+

-
Fnkp .

This deformation is then projected so that it obeys the Drucker-
Prager plasticity model as in [Pradhana-Tampubolon et al. 2017].
However, particles that are separated from clumps should not be
subject to plasticity and should be treated as discrete debris with
zero stress.

We approximate the particle density using a first-order accurate
formula. Specifically, we expandm(x) around xi asm(x) ≈m(xi ) +
(∇m) (xi ) · (x−xi ). If we reconstruct this mass field at xp accordingly,
we getmi (xp ) ≈ m(xi ) + (∇m) (xi ) · (xp − xi ), where we use the
superscript i to denote the use of node i for linearizing the mass
field. We estimate particle density using the weighted average of
grid masses:

ρp =
∑
i

Ni (xp )mi (xp ) ≈
∑
i

Ni (xp ) (mi + (∇m) (xi ) · (xp − xi )).

(22)

In the discrete case, this is written as

ρ
s,nk+1
p =

∑
i

Ni (x
s,nk
p )

(
m
s,nk
i + (∇ms,nk ) (xi )⊤ (x

s,nk
p − xi )

)
,

where ∇ms,nk (xi ) is defined in Eq. (15). One can view the gradient
of mass term as the first order approximation of nodal mass from
the mass of the surrounding particles. We validated the accuracy of

this strategy for a fluid simulation based on a weakly compressible
Equation-of-State model [Becker and Teschner 2007] and found that
an interpolation solely based on mass produces grid artifacts. We
would like to note that the gradient term can be seen as a second-
order term in the Taylor expansion of the mass expression.

To utilize this density approximation, at time t = 0, we compute
the initial average density

ρ̂ :=
1
Np

Np∑
p=1

ρs,0p , (23)

where the average is taken over all sediment particles that exist
at time 0. If the current density approximation is lower than this
initial average density, i.e. ρs,nk+1p < ρ̂, we then identify the particle
as a discrete kinematic body that does not undergo any elastic
deformation. This is equivalent to setting

Fnk+1p = I.

Note that due to the usage of APIC, the discrete particle still acts as
an independent body with a finite volume and maintains its angular
momentum.

5 RESULTS
We summarize the performance of our implementation in Table 2. In
our pipeline, the Preconditioned Conjugate Gradient (PCG) projec-
tion remains the most expensive component (this step takes about
6.25 seconds in the 3D transport example, compared to 3.3 seconds
for all the other operations). The sediment substep count depends
on the CFL condition. In the debris flow simulation, we take 60−100
sediment substeps per fluid step.

Fig. 7 shows the benefit of our debris treatment. As a block stirs
a pile of sand, previous elastoplastic MPM algorithms introduce
a severe volume gain. Pradhana et al. [2017] proposed a method
to mitigate this volume gain effect to a certain extent. However,
in a highly dynamic scenario like this, disconnected particles tend
to suffer from intense resistance when connecting back to a more
massive bulk. Our method offers a way to approximate state change,
i.e., when particles act like debris based on the surrounding den-
sity. For a more accurate ballistic motion, more careful modeling is
necessary [Smith et al. 2012].

Our algorithm can reproduce classical particle-laden phenomena
such as sand dune migration (Fig. 2). In this example, a source of
wind blows over a pile of sand as it moves from the left to the right,
forcing sand to migrate. The left of the figure depicts the result of
a simulation that is one-way-coupled (the wind affects the sand),
which produces a non-physical behavior. The right figure depicts a
two-way-coupled simulation, which creates more physically plausi-
ble dynamics on both the fluid and sand materials. The fluid (wind)
part of this example is based on the node-based Eulerian fluid solver
as proposed by [Guendelman et al. 2005] with vorticity confinement
as described in [Fedkiw et al. 2001]. Note that all of the other exam-
ples with water as fluids (i.e., based on [Zhang et al. 2017]) do not
use vorticity confinement.
Fig. 1 and 4 depict a particle-laden phenomenon that is created

when amixture of sand andwater is being poured into a thin channel.
The movement of the fluid transports the sediment. The presence of
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Fig. 11. Sedimentation 2D: A box of dirt is dropped into a water container, creating interesting vortices before settling down.

Table 2. Simulation performance and parameters. Superscript f and s represent fluid and sediment quantity respectively. The terms c , RPIC, and ρ are
the drag force coefficient, RPIC damping coefficient, and density respectively. Inflow ∥v∥ indicates the magnitude of source velocity. The parameter ρ f

choices are adhoc and do not always reflect reality. We denote the number of particles by #P and grid resolution by ∆x . The frame rate of all the examples
listed above are 48. The young’s modulus and Poisson’s ratio of all examples are 1000 and 0.3 respectively. Both Transports (Fig. 4 Top and Bottom) were run
with Intel(R) Xeon(R) CPU E3-1270 v3; Pile (Fig. 10) was run with Intel(R) Xeon(R) CPU E3-1241 v3; Flushing (Fig. 8) was run with Intel(R) Xeon(R) CPU
E5-1650 v3; Sedimentation (Fig. 12) was run with Intel(R) Core(TM) i7-8700K; Debris (Fig. 3) was run with Intel(R) Core(TM) i7-7700K.

Min/frame Initial #P f Initial #P s Max #P f Max #P s ∆x c RPIC ρ f ρs Inflow ∥vf ∥ Inflow ∥vs ∥

Transport (Fig. 4 Top) 4.9 0 3.1 × 105 1.0 × 106 3.9 × 105 1/512 0.9 0.2 1000 17 0.6 0.06
Transport (Fig. 4 Bottom) 4.9 0 3.1 × 105 1.0 × 106 3.9 × 105 1/512 0.9 0.4 1000 17 0.6 0.06
Pile (Fig. 10) 11.1 0 6.5 × 105 3.0 × 105 9.5 × 105 1/256 4 0 100 10 0.4 0.4
Flushing (Fig. 8) 21 0 2.3 × 105 1.9 × 106 2.3 × 105 1/256 2 0 1000 17 0.6 0
Debris (Fig. 3) 2.5 0 0 9.3 × 105 1.0 × 105 1/256 0 0 1000 150 0.15 0.015
Sedimentation (Fig. 12) 6.7 1.5 × 106 0 1.5 × 106 1.0 × 105 1/256 12 0.2 100 20 0 0.01

a cylindrical obstacle in the channel creates a hydraulic jump that
carries the sand over to the other side. The use of RPIC blending
helps to create a more laminar motion of the fluid (Fig. 4 bottom). A
similar phenomenon of debris flow, where a water and sand mixture
is poured into a wider channel with more complex collision objects
is illustrated in Fig. 3.

Our algorithm can also handle sedimentation phenomena, which
is depicted by Fig. 11 and Fig. 12. In these 2D and 3D simulations, a
box of sand is being dropped into a water container. We can observe
vortices that are created by the interaction between water and sand
materials. The sand materials eventually settle down at the bottom
of the container.

Fig. 12. Sedimentation 3D: We pour sediment into a box of water until it
settles at the bottom of the container.

Fig. 10 depicts a simulation where pure sediment particles form
a pile due to static friction (top). When liquid is injected, the pile
collapses and interacts with the fluid. Similarly, water is poured on
top of a pile of sediment that initially sits at the bottom of a glass
container in Fig. 8. The overflow of water washes the sediment out
of the glass.

6 DISCUSSION
Our model qualitatively captures a number of distinctive dynamic
features of particle-laden flows (such as dune migration and sed-
iment transport) and stands as a practical tool in animation and
VFX. As suggested in Sec. (§3.3), our model of the interaction term
only uses drag forces based on [Di Felice 1994]. We do not make
any claims on how broadly this model effectively captures empiri-
cal experiments. As such, a more rigorous study of sediment-fluid
interaction would require careful modeling of the other nontrivial
effects such as the lift force as discussed by Sun and Xiao [2016b].

Another limitation of our method is the clamping of the sediment
volume fraction (at locations where sediment and fluid co-exist),
which is motivated by numerical stability considerations. As such,
our simulations cannot capture the variations of granular flow as
studied in [Pailha et al. 2008]. Furthermore, at the interface of dry
and immersed sand, we do not apply any special treatment for the
sudden jump of sediment volume fraction from δ = 0.8 (the case of
liquid and sediment co-existing) to δ = 1 (the case of pure sediment)
as no noticeable artifacts were observed.
We presently rely on artificial viscosity from RPIC for adjusting

the extent of fluid turbulence. More physical and accurate viscos-
ity models incorporated into the Locally Averaged Navier-Stokes
discretization would be appropriate to investigate in future work.
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Due to the explicit treatment of the drag force, we occasionally
encounter numerical instability when the relative velocity is too
high, or the fluid volume fraction is too low (thus resorting to the
usage of a clamping threshold). Exploring a fully implicit treatment
of the interaction term would be a potential direction for future
study. Furthermore, the design of a preconditioner explicitly tailored
to the variable-coefficient Poisson system is an interesting research
question.
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