
Efficient and Conservative Fluids Using Bidirectional Mapping

ZIYIN QU∗, AICFVE and University of Pennsylvania
XINXIN ZHANG∗, AICFVE
MING GAO, University of Pennsylvania
CHENFANFU JIANG, University of Pennsylvania
BAOQUAN CHEN, Peking University
In this paper, we introduceBiMocq2, an unconditionally stable, pure Eulerian-
based advection scheme to efficiently preserve the advection accuracy of all
physical quantities for long-term fluid simulations. Our approach is built
upon the method of characteristic mapping (MCM). Instead of the costly
evaluation of the temporal characteristic integral, we evolve the mapping
function itself by solving an advection equation for the mappings. Dual
mesh characteristics (DMC) method is adopted to more accurately update
the mapping. Furthermore, to avoid visual artifacts like instant blur and tem-
poral inconsistency introduced by re-initialization, we introduce multi-level
mapping and back and forth error compensation.We conduct comprehensive
2D and 3D benchmark experiments to compare against alternative advection
schemes. In particular, for the vortical flow and level set experiments, our
method outperforms almost all state-of-art hybrid schemes, including FLIP,
PolyPic and Particle-Level-Set, at the cost of only two Semi-Lagrangian ad-
vections. Additionally, our method does not rely on the particle-grid transfer
operations, leading to a highly parallelizable pipeline. As a result, more than
45× performance acceleration can be achieved via even a straightforward
porting of the code from CPU to GPU.
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1 INTRODUCTION
Eulerian based fluid simulations have achieved great success in
reproducing a wide range of phenomena in computer graphics, such
as liquids [Aanjaneya et al. 2017; Enright et al. 2002b; Foster and
Fedkiw 2001], smoke and fire [Fedkiw et al. 2001; Nguyen et al.
2002; Rasmussen et al. 2003; Setaluri et al. 2014]. The framework
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Fig. 1. Frames of vortex ring colliding at Re=2000 simulated using BiMocq2,
from top to bottom: frame 80, frame 140, and frame 280. The proposed
method reproduces the whole process where colliding vortex rings stretch
and form the out-shooting jets from the side of the rings.

to solve the Navier-Stokes equation in a time splitting manner,
especially the critical insight to treat the nonlinear advection term
using Semi-Lagrangian scheme [Stam 1999], results in its most
significant advantage of stability, hence ease of control, along with
its biggest criticism: the numerical diffusion. For more details about
the background, we refer to the book by Bridson [2008].
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Eulerian methods start from the incompressible Navier-Stokes
equations,

∂u
∂t
+ u · ∇u = −

1
ρ
∇p + ν∇2u + f

∇ · u = 0
(1)

where u, p, ρ, ν , f represent velocity, pressure, density, kinematic
viscosity and external forces such as gravity. We adopt the standard
staggered MAC grid discretization. In the time-splitting framework,
the fluid quantities are first advected by solving

Du
Dt
= 0 (2)

to obtain an intermediate velocity field ũ. Boundary conditions, fluid
emission, and extra controls can then be enforced along with the
pressure projection step to obtain the velocity field un+1 of the next
time step, with the desired target divergence. Notice the physical
states are updated solely based on the information from the last time
step. With repeated Semi-Lagrangian advection, numerical diffusion
keeps being accumulated, degrading the prediction accuracy of the
solver.

On the other hand, in particle-grid hybrid methods, e.g. [Fu et al.
2017; Zhu and Bridson 2005], the particles carry the fluid quantities
while the momentum equation remains to be solved on the back-
ground grid. Those hybrid methods require additional particle-grid
transfer routines, which are usually parallel-unfriendly, present-
ing challenges to high-performance implementations, as has been
pointed out recently by [Ferstl et al. 2016].
In contrast to the two existing popular strategies, our method

represents the fluid state at time t = T as the temporal integral of
its material derivative from t = 0 along the trajectory, as can be
directly derived from Eqn. (1) [Tessendorf and Pelfrey 2011].

ϕ(x (T ) ,T ) = ϕ(x(t0), t0) +

T∫
t0

Dϕ
Dt
(x(τ ),τ )dτ , (3)

where ϕ denotes convective fluid quantities such as velocity, density,
temperature, fuel, level-sets, etc.; while Dϕ

Dt denotes the rate of
change of the quantity, as often due to acceleration, emission, or
combustion reaction.
One observation from Eqn. (3) is that when there is no external

influences (e.g., no acceleration/emission), the fluid quantity at t = T
should retain exactly the same value as it originally possessed. As
a result, if we keep an image of the fluid state at the initial time t0,
along with a backward mapping

X(x (T )) : x (T ) → x (t0) , (4)

which maps a spatial point x (T ) back to its position at t0, it would
be possible to acquire the exact state, avoiding the accumulated
numerical diffusion.

Following [Sato et al. 2017], given a particular degree-of-freedom
x (T ), the mapping can be found by integrating the trajectory back
in time assuming the availability of the velocity field at every single

time step:
x (t0) = X(x (T ))

= x (T ) −

T∫
t0

u (x (τ ) ,τ )dτ (5)

By substituting Eqn. (5) into Eqn. (3) and taking u as the convective
quantity, it gives the momentum equation as

u (x (T ) ,T ) = u
(
x (T ) −

T∫
t0

u (x (τ ) ,τ )dτ , t0

)

+

T∫
t0

Du
Dt
(x (τ ) ,τ )dτ (6)

In the case of T = t0 + ∆t , it is equivalent to the standard Semi-
Lagrangian advection. Direct evaluation of this integral in Eqn. (5)
is impractical since we need to explicitly store and access the fluid
states for every single time step. As mentioned in [Sato et al. 2017],
with explicit tracking, it becomes intractable for high-resolution
simulations. Instead, we choose to dynamically advect the mapping
X itself as the simulation proceeds to achieve high computational
efficiency.
While the backward mapping Eqn. (4) provides sufficient infor-

mation to predict the temporal states for pure advection, a practical
advection scheme has to also take external influences into consid-
eration. Previous methods, e.g. [Sato et al. 2017; Tessendorf and
Pelfrey 2011], directly evaluate the integral Eqn. (6) back in time,
which again has proven to be inefficient. We extend our idea of the
backward mapping to introduce a second mapping - the forward
mapping

Y(x (t0)) : x (t0) → x (T ) (7)
to facilitate the tracking of the changes in the flow due to external
interference. This forward mapping can be efficiently evolved by
solving a partial differential equation.
Nevertheless, the two mappings could quickly become too dis-

torted to stay effective, due to the possible intense stretching/shearing
of the underlying geometry in drastically deforming scenarios. We
further improve our backward and forward mappings by proposing
a remeshing and long-term error correction schemes.
In summary, we propose a novel approach BiMocq2 (n levels of

Bi-directional mapping of convective quantities) for conservative
long-term advection of fluid quantities, with the following features:
• The proposed scheme is unconditionally stable, allowing ar-
bitrary large ∆t for the simulation (even with CFL > 30 in
some cases).
• The advection scheme is purely Eulerian, which can be easily
parallelized to achieve 45× performance boost with a straight-
forward and simple GPU implementation.
• We track multi-level mappings to improve both the sharpness
and temporal coherence of the simulation while maintaining
computational efficiency.
• Based on the mapping functions, we propose long-term er-
ror correction schemes to improve the visual quality of the
simulation further.
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Fig. 2. Schematic illustration of a one level BiMocq2. Step 1: update the forward mapping by solving a partial differential equation of the mapping Y. Step 2:
update the backward mapping by solving the advection equation of the mapping. Step 3: any fluid quantity ϕ is obtained by using the updated backward
mapping XT+∆t and interpolating the fluid origin buffer ϕ0 and accumulation buffer ∆ϕT . Step 4: accumulate any fluid change through the updated forward
mapping YT+∆t to accumulation buffer ∆ϕ .

• The approach is orthogonal to previous fluid solvers, hence
can be integrated into existing pipelines with minor modifi-
cations.

In addition, to extensively evaluate our solver, comprehensive com-
parisons against state-of-the-art algorithms are conducted, including
2D and 3D vortical flow §4.1-4.2, level-set advection §4.1 and basic
3D smoke simulations. In addition, the solver is practically refined
for complex 3D simulations with moving boundaries §4.2 and vol-
umetric combustion §4.3. A schematic illustration of a one-level
BiMocq2 is given in Fig. 2.

2 RELATED WORK
By trading accuracy for stability, Semi-Lagrangian advectionmethod
[Stam 1999] has made fluid simulation highly practical for computer
graphics and opened a wide range of applications for physically
based fluid animation, such as smoke [Fedkiw et al. 2001], liquids
[Foster and Fedkiw 2001], flames [Nguyen et al. 2002], and volumet-
ric combustion [Feldman et al. 2003]. However, the Semi-Lagrangian
method manifests severe numerical diffusion due to the repeated
applications of field interpolation. A large volume of algorithms has
been proposed to address this issue.
Higher order Semi-Lagrangianmethods such as BFECC [Kim

et al. 2005] andMacCormack [Selle et al. 2008] take Semi-Lagrangian
as the building block, and restore the numerical accuracy of the flow
by measuring the difference of the flow both backward and forward
in time for the given time step; nevertheless, this kind of methods
lacks the essential mechanism to avoid accumulated errors, thus the
flow would eventually fade-out. Our approach takes advantage of
the flow information from a long-term period to largely reduce the
accumulation of numerical diffusion.
Particle-grid hybrid methods store all the fluid quantities on

the particles and rely on particle-mesh routines to transfer physical
values from particles to the background grid to resolve the momen-
tum conservation, and from the grid to particles to advect the system
status. While FLIP [Zhu and Bridson 2005] removes the numerical

diffusivity by only interpolating the change of the flow from the
grid, APIC [Jiang et al. 2015] and PolyPic [Fu et al. 2017] further
fix the numerical noise of FLIP by constructing additional func-
tions to preserve local flow features. Nevertheless, particle-mesh
operations require non-trivial effort to achieve optimized paral-
lelization for efficiency. As observed by [Ferstl et al. 2016; Gao et al.
2018], particle-mesh transfers are becoming the new bottleneck of
high-performance Eulerian fluid solvers due to the potential write-
conflicts when multiple particles attempt to write data into the
same node. Our approach only requires buffer samplings, thus can
be easily parallelized on shared memory computation architectures.

Vorticitymodeling looks at the curl form of Navier-Stokes equa-
tions [Cottet et al. 2000], by using either vortex filaments [Weiß-
mann and Pinkall 2010] or vortex sheets [Pfaff et al. 2012], or even
with Eulerian representations [Elcott et al. 2007; Zhang et al. 2015].
They have achieved great promises capturing vortical flow motions.
However, the need of a stream function solver [Ando et al. 2015], or
the need of managing the geometry [Brochu et al. 2012], or even
simply the need of artistic controls (with arbitrary boundary motion
and external forces) [Angelidis 2017] challenges the practicality of
vortex methods.

Energy preserving solvers, e.g., [Mullen et al. 2009], are able
to preserve fluid energy discretely; however the requirement of
applying Newton solvers to solve the non-linearly coupled equa-
tions makes it a costly choice for practical applications. A recently
proposed solver [Zehnder et al. 2018] demonstrates strong energy
preservation. The reflection time stepping essentially integrates the
Navier-Stokes equation in a prediction-correction manner where a
predictive pressure p̂ can be obtained from the previous time step.
And stepping the advection term with pressure correction improves
the temporal approximation order. However, this approach is mainly
designed for energy conservation of velocity dynamics. In fact, even
with an analytic velocity field, a straightforward advector may still
fail to preserve fluid details.
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Fluid details can be enhanced in many different ways: by eject-
ing external forces derived from the local flow field [Fedkiw et al.
2001], or simply as a post-process for fluid upscaling, such as [Kim
et al. 2008] and [Xie et al. 2018]. Our method is orthogonal to turbu-
lence models hence has no difficulty to be combined with them.
Fluid mapping techniques have been introduced to graphics in

previous works, for flow field visualization [Crawfis and Max 1993]
or procedural flow images [Sims 1992]. [Max et al. 1992] advect
cloud texture to visualize the wind field. [Stam and Fiume 1995]
traces back and warp blob particles to model fire appearance with a
diffusion model. In [Stam 1999], a back-warped mapping at every
time-step is essentially used to update flow fields.
Our method is based on the methods of characteristic map-

ping [Wiggert and Wylie 1976]. Despite some attempts in com-
puter graphics to use MCM for fluid simulation [Sato et al. 2017;
Tessendorf and Pelfrey 2011], existing MCM solvers are still im-
practical to be used, due to the expensive back time integration and
artifacts associated with the highly distorted mapping. [Tessendorf
2015] provides insightful analysis and derivations for the MCM
scheme with backward mapping, and even demonstrates exact solu-
tions in the case of simple velocity fields. On the other hand, our
work introduces the forward mapping to practically advect flow
fields in more general situations. We refer to [Tessendorf 2015] for
more theoretical backgrounds of the scheme.
In this paper, we explore the full potential of MCM for practi-

cal high-quality fluid simulations. We first completely avoid the
expensive integral of characteristics by advecting the mappings
dynamically, which can further be augmented with the dual mesh
characteristic (DMC) model to ensure the accuracy. Then we in-
troduce a multi-level mappings technique to preserve long-term
sharpness and temporal coherence of the flow field. The obtained
solver is efficient, highly parallel-friendly and yet, easy to implement.
Our method outperforms several state-of-the-art alternatives on the
standard benchmarks, and it is also capable of generating visually
appealing results with strong agreements with real phenomena.

3 BiMocq2

In this section, we explain in detail the proposed algorithm, includ-
ing backward mapping §3.2, forward mapping §3.3, error correction
§3.7 and our time integration scheme §3.6 which takes two levels
of mapping for efficient long-term prediction of the post-advection
velocity field. We found n = 2 to be a good balance in preserving
both the visual quality and the computational efficiency.
The outline of BiMocq2 is given in Alg. 1. For the sake of con-

ciseness, the discussion and explanation of our algorithm will be
focused on the velocity field only, but the same derivations stay
valid for any other fluid fields.

3.1 Data Structure
Dense grid storage scheme and Marker-And-Cell (MAC) discretiza-
tion are adopted in this paper. In addition to the buffers as required
by typical Eulerian fluid solvers, we use extra buffers to track the
forward and backward mappings. Each of them stores an individual
3D vector for every single cell, with index (i, j,k), in the simulation
domain. At time t0, the 3D vector of each grid cell of both buffers

ALGORITHM 1: Simulation time step with BiMocq2

Input: un , Xcurr, Xprev, Ycurr, ∆ucurr, ∆ρcurr, ∆Tcurr, ∆uprev, ∆ρprev,
∆Tprev, u0, u1, ρ0, ρ1, T0, T1, ∆t fluid state and auxiliary buffers
available at time step n.

Output: un+1, ρn+1, T n+1, Xcurr,Ycurr, ∆ucurr, ∆ρcurr, ∆Tcurr, updated
fluid quantity and auxiliary buffers.

1: Xcurr ← Advect(Xcurr, un, ∆t ) {§3.2.1}
2: Ycurr ← ForwardMap(Ycurr, un, ∆t ){§3.3}
3: // Denoting [u,ρ ,T ] as ϕ
4: ϕ∗ ← IntegrateMultiLevel(ϕ0, ∆ϕprev, ∆ϕcurr){§3.5}

ErrorCorrect(ϕ∗) {§3.7}
5: u∗∗, ρn+1, T n+1 ← AddFluidEmissionAndDiffusion()
6: δu, δ ρ, δT ← FluidChange()
7: ∆ucurr, ∆ρcurr, ∆Tcurr ←

ApplyChangeForwardMap(δu, δ ρ, δT ){§3.3}
8: un+1 ← P(u∗∗)
9: δu← un+1 − u∗∗

10: cp ← (ReinitializationCond == true)?1 : 2
11: ∆ucurr ← ApplyChangeForwardMap(cpδu){§3.3}
12: if (ReinitializationCond == true) then
13: Reinitialize(){§3.4}
14: ∆ucurr ← ApplyChangeForwardMap(cpδu)
15: end if

was initialized to the cell-centered coordinate of the grid cell,

X(i, j,k) = Y(i, j,k) = h × (i + 0.5, j + 0.5,k + 0.5)

where h represents the cell size. Those 3D vectors will then be
updated by the flow, and more details can be found in later sections.
Furthermore, we dynamically track the accumulated changes of

fluid quantities using additional accumulation buffers, e.g., ∆u for
velocities, ∆ρ for density, and ∆T for temperature. Each grid cell of
these buffers represents the corresponding accumulated physical
quantity changes.

3.2 Backward mapping
Applying Semi-Lagrangian advection repeatedly is one of the major
origination of numerical diffusion. Equivalently a low pass-filter is
constantly applied to the flow field, causing both fluid momentum
and mass to dissipate as the simulation proceeds as shown in Fig. 3.
On the other hand, MCM is designed to skip all intermediate

interpolations by tracing back to a previous time instant and directly
interpolating from that time instant to obtain a much sharper fluid
state. The idea is to find a backward mapping X, such that given a
spatial position x (T ), this mapping computes its original position
x (t0), satisfying Eqn. (5). This mapping can be generated on-the-fly,
by tracing back many time steps with the previously computed and
stored fluid velocity fields as in [Sato et al. 2017], which turns out
to be both time-consuming and memory-inefficient. To avoid such
difficulties, we instead dynamically advect the mapping as:

DX

Dt
=
∂X

∂t
+ u(t) · ∇X = 0 (8)

Given a fluid parcel at x (T ), the backward mapping of X(x (T ))
returns its original position x(t0) which actually remains fixed as
the fluid parcel moves. This observation indicates that the mapping
X essentially has a zero material derivative over time.
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Fig. 3. 2D simulation of a released smoke in a tank, from left to right: results
obtained with Semi-Lagrangian simulation, results from only advecting the
density field with BiMocq2, and results obtained by applying BiMocq2 to
both velocity and density fields. Note that simply improving the accuracy
of density advection is able to bring more detailed flow field as the density
field affects the flow simulation via buoyancy force. With BiMocq2 used
for both fields, the flow becomes more energetic due to better momentum
conservation.

With Eqn. (8), the mapping of the new time step can be obtained
by simply advecting the mapping of the previous time step. We can
employ Semi-Lagragian advection to get:

Xn+1(x) = Xn (x̂) (9)
where x̂ denotes the departing position at the previous time step

of a fluid parcel x and can be calculated as x̂ = x − ∆tun (x) in the
standard Semi-Lagrangian solvers.

3.2.1 Dual mesh characteristic. Although Semi-Lagrangian advec-
tion for the mapping diffuses the mapping itself, other fluid fields
may still retain certain sharpness using this mapping for interpo-
lation, as demonstrated in many previous works. Unfortunately,
in highly rotational velocity fields, this simple strategy drastically
loses its accuracy. To alleviate these issues, we apply dual-mesh
characteristic from [Cho et al. 2018], which improves the numerical
accuracy for the mapping advection.

Essentially, DMC solves a final value problem to find the starting
point of fluid parcel whose trajectory ends at fixed gird nodes. With
piece-wise linear velocity field, DMC derives an analytical solution
which contains exponentials. The DMC routine proceeds as follows
(explained in 1D): let x be the node position where we store our
mapping, we first calculate the other node position x̂ as

x̂ =

{
x − h, if v(x) ≤ 0,
x + h, otherwise.

(10)

Supposing the velocity can be linearly blended between x and x̂ :
v(ξ ) = v(x̂) + (ξ − x̂)a

a =
v(x) −v(x̂)

x − x̂

(11)

Note that v(x)dt = dξ , we have

∆t =

∫ tn

tn−1
dt =

∫ x

x

1
v(x)

dξ (12)

Combining Eqn. (11) and Eqn. (12) we can calculate the tracing-back
position as

x =

{
x −v(x)∆t , if a = 0,
x − 1

a (1 − e
−a∆t )v(x), otherwise.

(13)

where x and v also satisfy

x = x − ∆tv

v =
1

a∆t
(1 − e−a∆t )v(x)

(14)

v is the average velocity between x and x . Since DMC requires
CFL number to be less than 1, we perform multi-substeps with
a freezed velocity field to advect the mapping, similar as advect-
ing fluid buffers with many sub-steps for large ∆t in modern fluid
solvers.
As shown in the 2D Taylor vortex experiment in Fig. 4, DMC

better preserves vorticity than Semi-Lagrangian method. It can also
be observed that the separation positions of these two vortices are
different. Comparing with the result from the reflection solver in
Fig. 9, it becomes clear that DMC scheme produces a more accurate
result.

Fig. 4. Vorticity visualization of 2D Taylor Vortex test at t = 7.5, left: map-
ping advected with Semi-Lagrangian method, right: mapping advected with
DMC method.

3.3 Forward mapping and accumulated fluid changes
Besides backward mapping, we introduce its counterpart, forward
mapping, to track the accumulated fluid changes along the charac-
teristics. After the backward mapping of the current coordinates
has been constructed, the pure advection part of the flow can be
computed by

u(x(t), t) = u(X(x(t)), t0). (15)

However, when there exists external influences, such as viscosity
and pressure, we should take into account the fluid accelerations.
To track the acceleration, Sato et al. [2017] evaluate an integral

along the path back-in-time to accumulate fluid changes. To avoid
this time-consuming integration, we introduce a forward mapping
to expedite the computation.
Conceptually, if we trace massless infinitesimal monitors from

the initial time which are passively advected by the flow, we would
be able to observe and accumulate the flow acceleration along its
trajectory.
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ALGORITHM 2: Re-initialization with BiMocq2

Input: Xprev, Xcurr, Ycurr, ϕprev, ϕcurr, ϕn , ∆ϕprev, ∆ϕcurr
Output: Xprev, Xcurr, Ycurr, ϕprev, ϕcurr, ∆ϕprev, ∆ϕcurr
1: Xprev(i, j, k ) = Xcurr(i, j, k )
2: Xcurr(i, j, k ) = Ycurr(i, j, k ) = h × (i + 0.5, j + 0.5, k + 0.5)
3: ϕprev(i, j, k ) = ϕcurr(i, j, k )
4: ϕcurr(i, j, k ) = ϕn (i, j, k )
5: ∆ϕprev(i, j, k ) = ∆ϕcurr(i, j, k )
6: ∆ϕcurr(i, j, k ) = 0

ϕ denotes any fluid quantities, e.g. u , ρ , T and etc.

Mathematically, the accumulated fluid change as a function of its
original position can be defined as:

∆u(x (t0) , t) B

t∫
t0

dτ
Du
Dt
(x(τ ),τ ) (16)

Implementation-wise, we use the accumulation buffer ∆u, to track
the accumulated change: we follow the trajectory of a fluid parcel,
access the fluid change at given time with the parcel’s temporal
position, and add this change back to its origination position. In
our case, all infinitesimal fluid monitors were initiated at fixed grid
centers, we need to know the positioning of those infinitesimal
monitors at time t , hence we define a forward mapping Yt

t0 (x) :
x (t0) 7→ x(t) to keep such information.

With forward mapping, the accumulated change can now be
efficiently updated as:

∆u(x, t + ∆t) = ∆u(x, t) + δu(Yt+∆t
t0 (x), t + ∆t) (17)

where δu(Yt+∆t
t0 (x), t + ∆t) can be interpolated from the nodal mo-

mentum change obtained by numerically differencing the Navier-
Stokes equations after self-advection, sourcing from viscosity, pres-
sure gradients and external forces.
In fact, Yt

t0 can be evolved by forward tracing the particles’ po-
sitions; for example, given Yt

t0 (x) : x (t0) 7→ x(t), we can compute
Yt+∆t
t0 (x) : x(t0) 7→ x(t + ∆t), e.g. by one step Euler’s method, as:

Yt+∆t
t0 (x) = Yt

t0 (x) + ∆tu(Y
t
t0 (x), t) (18)

whose limit case becomes
∂Yt

t0
∂t
(x) = u(Yt

t0 (x), t) (19)

In practice, all our numerical tests adopt the third order accurate
Runge-Kutta method.

In contrast to particle-mesh hybrid methods where data splatting
is required, our approach remains parallel-friendly since interpola-
tions are the only critical operations.

3.4 Re-initialization and its criterion
When the backward and forward mappings become highly distorted,
the represented mapping functions are no longer valid; hence re-
initialization is required to re-initialize the mapping functions. Dur-
ing the re-initialization, the mappings will be set to an initial state
and the t0 flow state will be set to start from the current time. The
re-initialization algorithm is summarized in Alg. 2.

However, frequent re-initialization can gradually blur the flow.
Thus we propose a re-initialization criterion to determine when the
re-initialization operations should be applied.
Ideally, if all the computations are accurate, we argue that the

backward mapping of a forward mapping of a position shall return
the position itself. Hence, we measure the inaccuracy by looking at
the differences of the back and forth mapping of any test position
in the domain. Formally,

d1 = ∥Y(X(x(t))) − x(t)∥∞
d2 = ∥X(Y(x (t0))) − x (t0)∥∞

dmax = max(d1,d2)
(20)

To ensure the accuracy and robustness, this criterion should be
dimensionless and not be affected by resolution. Empirically we
design a dimensionless quantity q as

q =
dmax
∆tvmax

(21)

where vmax is the the maximum velocity component and ∆t is the
time step. When q is larger than some threshold q̂, it is preferred
to re-initialize the mapping to maintain the accuracy. We find q̂ ∈
[1.0, 1.5] to be a relatively well-balanced choice for velocity fields,
other fields may use more relaxed criteria.
When re-initialization with double characteristic mappings, we

first set the previous mapping and corresponding mapped fluid
states to the recent mapping information, keeping the previous
backward mapping, and at last re-initialize the current backward
and forward mappings to grid-cells’ positions.

3.5 Multi-level mapping
While the re-initialization of the mappings could possibly address
the issue of distortions, it would introduce noticeable blurs at frames
right after the re-initialization operations. To better preserve the
visual sharpness and temporal coherence of the simulation, two
levels of mapping can be employed for tracking fluid quantities. Let
tI−1 be the time when the previous re-initialization of the mapping
happens, with

X0(x(tI )) : x(tI ) 7→ x(tI−1)

and let tI be the time when the most recent re-initialization of the
mapping happens, with

X1(x(t)) : x(t) 7→ x(tI )

where t is the current time step to be solved for. The mapping
X(x(t)) : x(t) 7→ x(tI−1) can be readily retrieved via

Xt (x(t)) : x(t) 7→ x(tI−1) = X0(X1(x(t))) (22)

Consequently, the integral of fluid changes can be obtained by
interpolating twice from the two levels of forward mappings. For
the velocity components at a grid cell xд , we have:

x = Xt (xд)

u(xд , t) = I(uI−1, x) + I(∆uI−1, x)

+ I(∆uI ,X1(xд)) (23)

Where I represents a sampling operator. Other fluid fields can be
obtained in a similar way, as outlined in Alg. 1.
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Fig. 5. Two simulation cases with single layer mapping and double layer
mapping. Left side: for level-set advection, double characteristic map-
ping(middle left) improves the volume conservation. Right side: when look-
ing at the vorticity field of a vortical flow simulation, double characteristic
mapping(right most) preserves circulation much better.

In Fig. 5, we demonstrate that simulation quality can be signifi-
cantly improved by simply doing one more level of mapping.

3.6 Time integration
In this section, we extend a bit more with regard to some important
algorithmic choices as made in Alg. 1.
Pressure correction at the re-initialization instant. As per

[Zehnder et al. 2018], energy preserving can be achieved by adding
twice the amount of the projective pressure correction to the post-
advected velocity field. In our approach, this can be easily achieved
by cumulating twice the amount of pressure gradient to δu.
When the re-initialization is conducted (usually at the end of

one time step), some portions of the pressure gradient should be
added to ∆uI−1 (i.e. the previous cumulation buffer); while the other
portions of the pressure gradient should be added to ∆uI (i.e., the
new cumulation buffer). Whereas if we simply accumulate both
portions to ∆uI−1, we could end up losing the energy at the next
re-initialization point when ∆uI−1 gets erased. Artifacts due to this
temporal-misalignment of pressure corrections can be found in our
supplemental video.
Temporal blend. With our two levels of mappings, the post-

advection velocity field can be obtained from two integral trajecto-
ries: one from the previous mapping, and the other one from the
current mapping as per Eqn. (23). We blend the two results with a
blending weight by inserting one more term into Eqn. (23):

x = Xt (xд)

u(xд , t) =
1
2I(uI−1, x) +

1
2I(uI ,X1(xд))

+
1
2I(∆uI−1, x) + I(∆uI ,X1(xд)) (24)

Again, the same computation can be applied to other fluid buffers.

3.7 Error correction with BiMocq2

Till now, our pipeline would already be able to outperform most al-
ternative methods in the standard benchmarks as shown in Section 4.
However, there are still two major sources of possible numerical
diffusion which may hinder us from getting even more visual details
in practical simulations:
• Any numerical dissipation generated up to the re-initialization
time would be inherited by the simulations afterward.
• The sampling from a previously mapped fluid state to obtain
the current flow prediction could also suffer from diffusion.

Fig. 6. Two vortex pairs leapfrogging. Left: vorticity field result without any
error correction. Middle left: vorticity field obtained with the gapped EC.
Middle right: with the same velocity field, density field obtained without EC.
Right: with the same velocity field, density field obtained with the gapped
EC.

We propose an error correction method to tackle these two types
of numerical diffusion to achieve significant improvements in our
experiments, e.g. Fig. 6.
Extending the derivations in [Kim et al. 2005], we estimate the

numerical diffusion e between the long-term backward and forward
mappings of a filed ϕ as:

ϕ∗(xд) = I(ϕ0,X(xд))

e(xд) =
1
2 (I(ϕ

∗,Y(xд)) − ϕ0(xд)) (25)

where I represents a sampling method and ϕ0 represents the initial
state at the previously re-initialized mapping instant.
After we get e , we map it to the future time by sampling it with

the backward mapping, and consequently correct the flow field
(velocity, density, temperature, etc.) via

ϕ∗(xд) = ϕ∗(xд) − I(e,X(xд)) (26)

Here we identified this BFECC type of error correction ([Kim et al.
2005]) works extremely well with our long-term mappings, while
the MacCormack type of error correction ([Selle et al. 2008]) loses
its effectiveness. This discrepancy also implies that the error e is a
quantity from the past moment.

When dealing with our long-term corrections, we must take into
account the accumulated changes. In our implementation, for every
time step we first remove the sampling errors from the fluid changes,
such as δu,δρ and δT , before adding them to the accumulation
buffer. Then we compute the long-term error as:

ϕ∗(xд) = I(ϕ0,X(xд)) + I(∆ϕ,X(xд))

e(xд) =
1
2 (I(ϕ

∗,Y(xд)) − ∆ϕ(xд) − ϕ0(xд)) (27)

where I indicates a sampling operation and ∆ϕ represents the
accumulated changes from the previous re-initialization instant.

3.7.1 Discussion of error correction. The error correction (EC) can
be applied either for every time step (the regular EC), or be applied
to the “t0 buffers” only when the re-initialization is performed (the
gapped EC).

In Fig. 6, we compare the solver accuracy with and without error
correction, where in particular the gapped EC is employed. It is
obvious that the gapped EC not only improves the accuracy of the
velocity field prediction, resulting in qualitatively different velocity
fields, but also increases the sharpness of density field advection
over a long-term period, enhancing the animation richness.
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In Fig. 7, we further examine the effects of both the regular EC
and the gapped EC. We observe that in the vortex leapfrogging
example, error correction effectively improves the dynamics of the
flow, leads to multiple rounds of vortex pair leapfrogs. In the Taylor
vortex example, EC has less effect in improving the visual quality
of the flow; our hypothesis is that the effectiveness of EC is highly
related to the resolution of the vortical features. In both cases, no
significant discrepancy is observed between the standard EC and
the gapped EC; thus we recommend using gapped EC for efficiency
considerations. The energy plots of the Taylor vortex simulation
with different EC options are also provided in Fig. 8.

Fig. 7. Flow field visualization of two simulation cases. Left column: flow
field obtained with the regular EC, middle column: flow field obtained with
the gapped EC, right column: flow field obtained without EC.

3.7.2 Clamp Extrema. According to [Selle et al. 2008], such error
correction may introduce new local extrema into the flow, degrading
the stability. Hence, before writing back the corrected value, we
clamp it by the maximum and minimum value from the neighboring
cells, which are the post-advection values of the flow field.

4 RESULTS
We evaluate our BiMocq2 algorithm with standard 2D benchmarks
and test its practicality and performance with 3D simulations. The
experiments reveal that BiMocq2 has the potential to deliver much
more accurate predictions for the fluid momentum with extremely
sharp scalar field advection, beyond the capability of existing alter-
natives. We summarize the configurations for the benchmarks in
Table 1. All the corresponding visual comparisons can be found in
the supplemental video.

4.1 2D Results
Taylor Vortex. We follow the settings in [McKenzie 2007]: two

vortices are placed close to each other, and they can either separate
or merge as the simulation proceeds depending on their initial
distance. We set this distance to 0.81, which is slightly larger than
the critical separation distance. As shown in Fig. 9, most previous
methods fail to separate the two vortices; while our solver produces
very similar results as the reflection-advection solver from [Zehnder
et al. 2018].

Level Set Advection. In the first test, we adopt the classical Za-
lesak’s disk setting described in [Selle et al. 2008]. As shown in
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Fig. 8. Energy plots of 2D and 3D simulations. Left: energy curves produced
with different error correction schemes, although the regular EC (red) gives
best energy preserving result, the gapped EC (green) ismore computationally
efficient and produces almost visually identical result to that of regular EC.
Simply correcting the accumulation buffer (blue) improves little compared to
the one without any error correction (yellow). Right: energy curves produced
by a 3D simulation of a injected smoke, our method (red) demonstrated
superior preservation of energy.

Table 1. Simulation Configuration. (1) Smoke Emitter, Fig. 3, (2) Taylor
Vortex, Fig. 9, (3) Zalesak’s Disk, Fig. 10, (4) Vortex Leapforgging, Fig. 12,
(5) Vortex in Box, Fig. 11, (6) Rayleigh-Taylor instability, Fig. 13, (7) Simple
Smoke, Fig. 14, (8) Smoke with Moving Boundary, Fig. 16, (9) Vortex Collide,
Fig. 1, (10) Combustion, Fig. 18, (11) Skidding car, Fig. 15

.
Domain Resolution ∆t CFLa

1 1 × 2 256 × 1024 0.03 ∞

2 2π × 2π 256 × 256 0.025 ∞

3 1 × 1 200 × 200 − 0.75
4 2π × 2π 256 × 256 0.025 ∞

5 1 × 1 512 × 512 − 0.5
6 0.2 × 1 256 × 1280 0.01 ∞

7 1 × 2 × 1 200 × 400 × 200 0.02 ∞

8 2 × 4 × 2 256 × 512 × 256 0.04 ∞

9 0.2 × 0.4 × 0.4 200 × 400 × 400 0.08 ∞

10 2 × 2 × 2 256 × 256 × 256 0.02 ∞

11 25 × 10 × 5 800 × 320 × 160 0.01 ∞

aTime-step restriction, with∞ indicating no restriction on the time-step.

Fig. 9. 2D Taylor Vortices results at t = 7.5 seconds. Color indicates the
vorticity magnitude.
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Fig. 10, Semi-Lagrangian scheme suffers from serious dissipation,
while BFECC generates a visually better result but nevertheless in
a distorted way. On the contrary, our scheme introduces almost
zero dissipation and is capable to maintain the disk shape even after
three revolutions of rotations.

Fig. 10. 2D Zalesak’s disk. Results shown are Semi-Lagrangian (left), BFECC
(middle) and BiMocq2 (right) at t = 79 seconds (top), t = 628 seconds
(middle) and t = 1884 seconds (bottom). Note that our method can almost
perfectly match the original shape after three revolutions.

The second level set test follows [Aanjaneya et al. 2017], where a
level set circle deforms under the vortex velocity field in a box. As we
can notice in Fig. 11, the BFECC method renders severe volume loss,
while the particle level set method [Enright et al. 2002a] conserves
volume better at the cost of repeatedly re-sampling 16 particles per
cell near the interface. Our method manages to produce further
improved result over the particle level set method without paying
extra computations for particle re-samplings.

Vortex Leapfrogging. In this example (Fig. 12), two clock-wise
rotating vortex pairs with identical strength are released from the

Fig. 11. 2D Vortex in a Box. Comparisons between BFECC (left), particle
level set (middle) and our method (right) at t = 3.2 seconds (top) and t = 5
seconds (bottom). BiMocq2 can preserve volume over a long time period
with small computational cost.

Fig. 12. 2DVortex Leapfrogging. Top and bottom rows are visualized vorticity
and density fields at t = 6, t = 18.5, t = 50 and t = 70 seconds.

Fig. 13. 2D simulation of Rayleigh-Taylor instability, frame 118. Top left:
result fromMacCormack Reflection solver with BFECC density advector at a
simulation resolution of 256x1280. Top middle: result obtained with BiMocq2
at a simulation resolution of 256x1280. Top right: reference simulation at a
simulation resolution of 768x3840. Bottom row: zoom-in view of the vortex
rolling-up structure of the Kelvin-Helmholtz instability from each method.

‘

bottom of a tank. The outer vortex pair is initially separated with
twice the distance compared to the inner pair. Our method main-
tains the vortices over a long term period and meanwhile keeps the
sharpness of the density field.

Rayleigh-Taylor Instability . In this example (Fig. 13), the Kevin-
Helmholtz-Rayleigh-Taylor instability was studied using a Boussi-
nesq model. Blue (heavier) fluid was initially placed on top of a
lighter (yellow) fluid. The density difference produces buoyancy
forces that deforms the fluid interface. During this process, the den-
sity gradient along the interface of the two flow may introduce
strong vorticle accelerations to the flow field, causing the interface
(a vortex-sheet) to roll-up. This phenomenon is known as Kelvin-
Helmholtz instability (Fig. 13, bottom row). The rolling-up of vor-
tices is highly coupled with the sharpness of the density-interface.
Fig. 13 shows that our method outperforms [Zehnder et al. 2018]
with more accurate prediction of the vortex rolling-up structures,
as can be verified by comparison to the reference simulation at 3×
resolution.

4.2 3D simulations and the performance
For 3D simulations, while all the other portions of our pipeline
remain in CPU, we specifically ported the kernel in response to the
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Fig. 14. Smoke ball rising up. Left: simulated with MacCormack advector.
Middle: [Zehnder et al. 2018] Reflection solver for velocity field and Mac-
Cormack for density field. Right: our method. The ability to preserve thin
structure of density field not only results in better visual richness, but also
leads to more turbulence.

passive advections from CPU to GPU. For integrating the advection
trajectory, such design choice, to our experience, usually provides
superior efficiency. In practice, modern fluid solvers prefer to take
sub-steps for passive advection of quantity; as a result, the advection
kernel can easily become the bottleneck of advanced fluid solvers,
especially when the pressure projection phase is equipped with an
efficient multigrid preconditioner.

In a simulation casewith a 300×600×600 domain and∆t > 30CFL,
our CPU parallel implementation of the pressure projection takes
about 40 seconds to converge to the machine precision (and option-
ally takes another 100 seconds to build the multi-level matrices with
moving boundaries); Our CPU parallel passive advection kernel
requires more than 15 minutes to finish all the high-order ODE
integrations with multiple sub-steps, which is intolerable for a large
scale fluid solver. Thus, we ported the advection portion to GPU in
a straightforward way to reduce the cost to ∼20 seconds, leading to
roughly a 45× speedup for the advection and an overall 6× speedup
for the whole pipeline.

All the 3D performance timings are collected from a desktop ma-
chine with an Intel Core i7-6950X @ 3.00GHz CPU, an 128GM RAM
and a nVidia Titan Xp graphics card. All the advectors (MacCormack,
Semi-Lagragian, BFECC, DMC) are implemented on GPU while
the pressure solver remains on CPU. All our 3D simulations were
performed without any vorticity confinement or post-turbulence
models.

Simple Smoke. In this test Fig. 14, two smoke spheres with differ-
ent heat are released from the bottom of the container. Each frame
takes ∼22 seconds with MacCormack advector and ∼28 seconds
with our solver; while with MacCormack Reflection solver it takes
∼40 seconds. BiMocq2 drastically increases the sharpness of the
smoke, resulting not only in a sharper appearance with passive thin
features but also a more turbulent field with better preserved thin
smoke structures.

Smoke with Moving Boundaries. In Fig. 15, a car skidding through
a density field is simulated, each frame takes ∼70 seconds. In Fig. 16,

Fig. 15. Frames of a turbulent flow filed introduced by a skidding car. Top:
frame 100, bottom: frame 275.

a rising smoke plume colliding with a sphere is simulated. The
sphere remains stationary for the first 50 frames and then begins to
move up and down. Each frame of the simulation costs ∼60 seconds.
With relative motions at obstacle boundaries, mappings quickly

become highly distorted near the collision boundary. Notice that
flow lines from different origins can be stopped by the obstacle
surface and hence the mapping information they carry, resulting
in unresolvable mappings near the boundary; while at the regions
far away from the collision surface, the mappings remain valid for
advection. Hence, for a band of cells near the boundary, we revert
the post-advection velocity field to BFECC advected results from
last time step, and then compute the change between the reverted
values and the values predicted by the long-term mappings. This
difference should be considered as a momentum change and then
be added to the accumulation buffer accordingly. Since the flow
features in the vicinity of the boundary are essentially dominated
by the boundary layer dynamics in lieu of the convection, we claim
our boundary treatment is highly viable and in general accurate.

Fig. 16. Simulation of a rising smoke colliding with a moving sphere, from
left to right: frame 32, frame 57, frame 116 and frame 232.

Vortex collide. In this example (Fig. 1), ink with different colors
(colors don’t affect the flow) are injected into the each other at the
speed of 0.05m/sec to form two vortex rings. The sources are 0.12m
apart and the container, with resolution 200× 400× 400 and cell size
0.001m, is full of fluid with a kinematic viscosity of 1 × 10−6m2/s,
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Fig. 17. Vortex rings collide. Top row: frames from MacCormack simulation;
both the dye and momentum quickly diffuse out, thus the result diverges
from reality. Middle row: [Zehnder et al. 2018] Reflection solver for velocity
field and MacCormack for density field; although the momentum is well
preserved, the density field still diffuses out due to the numerical dissipation.
Bottom row: frames from our solver; with the great power to perform con-
servative convection, both the dye and velocity energy are well preserved,
resulting in good agreement with real observation.

giving a Reynolds number of 2000. Our method shows great agree-
ment with the vortex re-connection phenomena as documented in
[Lim and Nickels 1992]. Each frame takes ∼50 seconds. In contrast,
an equivalent MacCormack simulation fails to reproduce such phe-
nomena, while MacCormack Reflection solver is able to preserve the
momentum but still loses sharpness in density field. A comparison
can be found in Fig. 17.

4.3 Volumetric combustion
We further apply our BiMocq2 solver to simulate volumetric com-
bustion. We follow the divergence control strategy [Bridson 2008;
Feldman et al. 2003]; while in addition to those solvers, we approxi-
mate the full flux of momentum, readily

∂u
∂t
+ u · ∇u + u∇ · u = −

1
ρ
∇p + f

∇ · u = д (28)

where д is the target divergence function obtained from combustion
reaction calculations.
While the BiMocq2 solver integrates the advection-acceleration

equation at great accuracy, we solve an additional differential equa-
tion for the intermediate velocity u∗ to account for the full flux,
formally,

Ûu = −u∇ · u (29)
This equation is solved on a grid-based manner and the change of
velocity is accumulated to the accumulation buffer following §3.3.
Simulation of 3D explosion can be found in Fig. 18.

Fig. 18. Our method simulating explosions modeled with divergence control.
The explosion was initiated with two burning sources at the bottom.

5 LIMITATION AND FUTURE WORK
Limitations. Although the proposed method is not restricted by

CFL condition, the simulation accuracy highly relies on the con-
sistency of the forward and backward mappings. Results become
meaningless when the two mappings mismatch with each other to
a certain extent. Furthermore, in the vicinity of the solid boundary,
the proposed solution works sufficiently well to account for the
boundary contact. However in the cases with free-boundaries being
the visual focus of the simulation, extrapolation schemes shall be
developed to warp the mapping functions around the area.

Future work. Our method inspires and enables us to probe into a
few interesting possibilities as the future work.
Liquid. We are curious to see the method applied to free-surface
flow simulations. We have already examined the effectiveness of
our method for level set advections. We would like to explore the
possibility of extending our idea to also improve the traditional fast
marching method as well as the velocity extrapolations. We think
the method also has great potential for numerically circulation pre-
serving vortex simulations. Imagine the length of a vortex segment
can be determined with the forward mapping and thus the temporal
vorticity, which can be expressed as a production of a t = 0 quantity
with the length, such approach could avoid the numerically unstable
vortex stretching term in 3D simulations.
Eulerian solid and its coupling with fluid. As Eulerian grid-
based solid simulation [Fan et al. 2013; Levin et al. 2011; Teng et al.
2016] becomes popular in graphics community due to its ability to
enable easier coupling between fluid and solid and its robustness
even with large time steps. We are interested in investigations of
applying our method to such problems.
Sparse data structure. Our current pipeline is built upon a tradi-
tional dense data structure, which prohibits extremely high-resolution
applications as in [Aanjaneya et al. 2017; Setaluri et al. 2014]. Thus,
we look forward to exploring possibilities to exploit modern highly
efficient sparse data structure for storing Cartesian grids such as
OpenVDB [Museth 2013] and SPGrid [Gao 2018; Setaluri et al. 2014]
to further accelerate the computation.
Adaptivity. Adaptive methods are usually employed to dedicate
limited computational powers to regions of interests [Aanjaneya
et al. 2017; Gao et al. 2017; Setaluri et al. 2014], such as the collision
interfaces between smoke/liquid and rigid bodies. It would be chal-
lenging but meaningful to also apply this strategy to our method:
when the flow front (of a plume, or wave) moves, or when vortical
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motion stretches the flow structure, mappings become highly en-
tangled and shall be resolved with increased resolution.
Other directions. Our mappings can also be combined to study
the data science of flow. For example, with the mappings available,
we can study the possibility to directly learn from the flow trajec-
tory. Furthermore, our method is a pure Eulerian method with both
high accuracy and low dissipation, its performance can possibly
be greatly boosted with GPU acceleration. We look forward to see-
ing such an accurate real-time simulation environment for other
graphics researches such as reinforced learning for swimmers.
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