
CD-MPM: Continuum Damage Material Point Methods for

Dynamic Fracture Animation: Supplemental Document

Joshuah Wolper, Yu Fang, Minchen Li, Jiecong Lu, Ming Gao, Chenfanfu Jiang

Contents

1 Pseudocode 2
1.1 PFF-MPM Step . 2
1.2 NACC Plasticity . 3

2 Incremental Potential and Euler-Lagrangian Equations 4
2.1 Momentum Conservation . 4
2.2 Phase-Field Evolution . 4

2.2.1 Parabolic Phase-field Evolution . 4
2.2.2 Alternative derivation with functional derivatives . 5

3 MLS-MPM Implicit Phase-Field Solver 5
3.1 Weak Form . 5
3.2 MLS Shape Functions . 6
3.3 Lumped Mass . 6
3.4 The force term . 7
3.5 Summary . 7

4 Elasticity 8
4.1 Energy . 8
4.2 Stress . 8

4.2.1 Deviatoric stress . 8
4.2.2 Volumetric stress . 9
4.2.3 Total stress . 9

4.3 Stress derivative . 10
4.3.1 Deviatoric stress derivative . 10
4.3.2 Volumetric stress derivative . 10

5 Plasticity 10
5.1 The basics . 10
5.2 Cam Clay . 12

5.2.1 Case 1 and Case 2 . 15
5.2.2 Hardening . 15

5.3 von Mises . 17
5.4 Drucker Prager . 18
5.5 Condition for Volume Preserving Plasticity . 19

6 Local vs. Non-local CDM 20
6.1 Fracture Modes . 20
6.2 Resolution Dependence . 20

1

1 Pseudocode

Here we present algorithms for our two approaches to dynamic fracture animation. Note that we highlight
only the key differences between our routines and traditional MPM to better illustrate these contributions
as MPM augmentations.

1.1 PFF-MPM Step

Algorithm 1 PFF-MPM Step

1: procedure PhaseP2G
2: Compute interpolation weights, wnip //We use quadratic B-spline
3: for each grid node, i do

4: cni =
∑
p w

n
ipc

n
p∑

p w
n
ip

5: procedure PhaseSolve
6: //Goal is to contruct and solve this system for c: (M+H)c = r

7: r = [ri] =
∑
p V

n
p (Mc +

cnp
∆t)w

n
ip //Build rhs

8: H = [Hij] =
∑
p V

n
p (4l20Mc)(∇Θi(x

n
p))T (∇Θj(x

n
p)) //Build MPM discrete Laplace operator

9: M = [Mii] =
∑
p V

n
p

(
4l0Mc(1−r)ΨHp

G +Mc + 1
∆t

)
wnip //Build diagonal lumped mass matrix

10: Solve the system with PCG (Jacobi preconditioner takes around 4 iters)

11: procedure PhaseG2P
12: for each particle, p do
13: cn+1

p = max(0,min(cnp , c
n
p +

∑
i(c

n+1
i − cni)wnip)) //Prevent material healing and keep c ∈ [0, 1]

14: Run traditional MPM step as usual until computeForce
15: procedure computeForce //Key difference is this incorporates cn+1

p

16: if symplectic then
17: fni = −

∑
p V

0
p w

n
ipM

−1
p

∂Ψ
∂F (F np , c

n+1
p)F np

T (xni − xnp)
18: else if implicit then
19: fn+1

i = −
∑
p V

0
p w

n
ipM

−1
p

∂Ψ
∂F (F n+1

p , cn+1
p)F np

T (xni − xnp)

20: Finish MPM step like usual (with or without plasticity return mapping)

2

1.2 NACC Plasticity

Algorithm 2 NACC Plasticity

1: Run MPM step until we have updated elastic deformation gradients, Fp
E,n+1

2: procedure projectStrainNACC
3: U , Σ, V T = SVD(Fp

E,n+1)
4: p0 = κ (0.00001 + ξ sinh(max(-α,0))) //buffer prevents YS from collapsing to a single point at 0
5: JE,tr = Σ0,0 * Σ1,1 * Σ2,2

6: ŝtr = µJE,tr
−2
d dev(Σ2)

7: Ψκ′ = κ
2 (JE,tr − 1

JE,tr
)

8: ptr = −Ψκ′JE,tr

9: if ptr > p0 then //Case 1: Project to max tip of YS

10: JE,n+1 =
√
−2p0
κ + 1

11: Σn+1
i,i = JE,n+1

1
d for i = 0, 1, 2

12: α += log(JE,tr

JE,n+1)
13: return U ∗ Σn+1 ∗ V T
14: if ptr < −βp0 then //Case 2: Project to min tip of YS

15: JE,n+1 =
√

2βp0
κ + 1

16: Σn+1
i,i = JE,n+1

1
d for i = 0, 1, 2

17: α += log(JE,tr

JE,n+1)
18: return U ∗ Σn+1 ∗ V T
19: y = (1 + 2β)(6−d

2)||ŝtr||+M2(ptr + βp0)(ptr − p0)
20: if y < 0.0001 then //Inside YS
21: return U ∗ Σ ∗ V T
22: if p0 > 0.0001 and ptr < p0 − 0.0001 and ptr > −βp0 + 0.0001 then //Case 3: Hardening Routine
23: pc = (1− β)p02

24: qtr =
√

6−d
2 ||ŝ

tr||
25: direction[0] = pc − ptr
26: direction[1] = 0− qtr
27: direction = direction

||direction||
28: C = M2(pc + βp0)(pc − p0)
29: B = M2direction[0](2pc − p0 + βp0)
30: A = M2direction[0]2 + (1 + 2β)direction[1]2

31: l1 = −B+
√
B2−4AC
2A

32: l2 = −B−
√
B2−4AC
2A

33: p1 = pc + l1direction[0]
34: p2 = pc + l2direction[0]
35: p× = (ptr − pc)(p1 − pc) ? p1 : p2

36: JE,× =
√
−2p×

κ + 1

37: if JE,× > 0.0001 then
38: α += log(J

E,tr

JE,×
)

39: //Case 3: Yield Surface Projection

40: b̂E,n+1 =

√
−M2(ptr+βp0)(ptr−p0)

(1+2β)(6−d
2)

(J
E,tr

2
d

µ) ŝtr

||ŝtr|| + 1
d trace(Σ2)

41: Σn+1
i,i =

√
b̂E,n+1
i for i = 0, 1, 2

42: return U ∗ Σn+1 ∗ V T

3

2 Incremental Potential and Euler-Lagrangian Equations

2.1 Momentum Conservation

We focus on the response of hyper-elastoplastic solids, where the backward Euler time integration from
tn to tn+1 can be recast into a variational problem [14] minimizing an incremental energy in the material
space Ω0. For our degraded hyperelastic object, the incremental elastic energy density in terms of the
unknown tn+1 deformation map is defined as

W (F n+1, cn+1) = Ψ(F n+1, cn+1)−Ψ(F n, cn). (1)

Let’s lag the effect of the phase-field and assume cn+1 = cn and W = W (F n+1) (pure hyperelasticity).
In this case, Radovitzky and Ortiz [14] proposed the following incremental potential energy for backward
Euler:

I(φn+1) =

∫
Ω0

(
1

2

R

∆t2
|φn+1|2 +W (F n+1)

)
dX

−
∫

Ω0

(
fext +R

φ̂

∆t2

)
· φn+1dX −

∫
∂Ω0

T n+1 · φn+1dS, (2)

where φ̂ = φn + ∆t∂φ∂t
n

with V = ∂φ
∂t being the Lagrangian velocity, R(X, t) being the Lagrangian density,

f ext being the external force per unit volume (such as gravity Rg), and T n+1 being the prescribed traction
boundary condition at tn+1 (which we assume is zero for the following derivation). The optimal φn+1 can
be found by solving the variational problem [14]

I(φn+1) = inf
φ̃
I(φ̃), (3)

which requires computing the variational derivative of the functional I(φ). Denoting the integrand in
I(φn+1) with L(φ,∇Xφ) where ∇Xφ = F , we can easily write the Euler-Lagrangian form of Eqn. (2)

∂L
∂φ
− d

dX

∂L
∂∇Xφ

= 0,

which reveals the Lagrangian momentum conservation

R

∆t2
φn+1 −∇X · P n+1 = f ext +

R

∆t2
(φn + ∆tV n), (4)

where P n+1 = ∂Ψ
∂F (F n+1) is the first Piola-Kirchhoff stress. Note that with implicit Euler, the advection

of the deformation mapping is given by φn+1 = φn + ∆tV n+1, which also allows us to reformulate Eqn.
(4) in terms of velocities.

2.2 Phase-Field Evolution

2.2.1 Parabolic Phase-field Evolution

To avoid the problems with local damage mechanics, we target a phase-field evolution rule that is con-
structed using the Ginzburg-Landau theory [13] following general thermodynamics and kinetics.

Since we want to solve our phase-field governing equation with backward Euler, we propose a phase-field
enhanced incremental potential by augmenting Eqn. (2) with additional inertia terms related to c (note
that we have omitted the traction boundary term):

I(cn+1, φn+1)

=

∫
Ω0

(
1

2

Rc
∆t
|cn+1|2 +

1

2

R

∆t2
|φn+1|2 +W (F n+1, cn+1)

)
dX

−
∫

Ω0

(
fext +R

φ̂

∆t2

)
· φn+1dX −

∫
Ω0

Rc
∆t

cncn+1dX, (5)

4

where Rc(X, t), similarly to mass density R, controls the balancing ratio between the phase-field inertia
and the elastic energy. Similarly to before, we denote the integrand of I(c, φ) with L(c,∇Xc, φ,∇Xφ).
The Euler-Lagrangian equation for cn+1(X) (given by ∂L

∂c −
d
dX

∂L
∂∇Xc

= 0) reveals(
4l0Mc(1− r)Ψ+

G
+Mc +

1

∆t

)
cn+1 − (4l20Mc)∇2cn+1 = Mc +

cn

∆t
, (6)

where Mc = G/(2Rcl0) is a material parameter, and ∇2 is the Laplace operator with respect to X.

2.2.2 Alternative derivation with functional derivatives

Note that our result is consistent with the dynamic Ginzburg-Landau type evolution equation proposed by
Kuhn and Müller [12] as

Dc

Dt
= −M̂ δE

δc
, (7)

where M̂ is a scaled version of our Mc that controls the viscosity of crack propagation and is usually
measured empirically. δE

δc is the functional derivative of the free energy. Note that we use c(x, t) and
c(X, t) to denote Eulerian and Lagrangian phase-field quantities respectively throughout the paper, with
the understanding that all Lagrangian quantities are pushed forward into their Eulerian counterparts to
enable an MPM discretization.

The Eulerian governing PDE for c thus boils down to computing the functional derivative δE
δc .

E =

∫
Ωt
g(c)Ψ+ + Ψ− +

(
(c− 1)2

4l0
+ l0|∇xc|2

)
Gdx,

where g(c) = (1− r)c2 + r. We can compute its functional derivative [5] to get

δE [c]

δc(x)
= (2(1− r)c)Ψ+ +

c− 1

2l0
G − 2l0G∇2c.

By defining Mc = M̂
2l0
G, we observe the equivalence between Eq. 7 and Eq. 6.

3 MLS-MPM Implicit Phase-Field Solver

3.1 Weak Form

Our goal is to use MPM to discretize the Backward Euler form of the parabolic phase-field evolution
equation. In particular, we use Moving Least Squares MPM shape functions [9] due to their superior
efficiency and ease of implementation. The Lagrangian governing equation is given by:(

4l0Mc(1− r)ψH

G
+Mc +

1

∆t

)
cn+1 − (4l20Mc)∇2cn+1 = Mc +

cn

∆t
.

The Eulerian weak form of this PDE is∫
Ωt
ω((α− β∇2)cn+1 − γ)dx = 0,

where α(x, t), β(x, t), and γ(x, t) are the corresponding coefficients, and ω(x, t) is an arbitrary test function.
We follow the same way of discretizing the momentum equation using a Galerkin style weak form [10]

and take an updated Lagrangian view by looking at tn.

5

3.2 MLS Shape Functions

For any test function w(x, tn) in the proper function space, the time discretization reveals∫
Ωtn

w(x, tn){(α(x, tn)− β(x, tn)∇2)c(x, tn+1)− γ(x, tn)}dx = 0∫
Ωtn

w(x, tn){α(x, tn)c(x, tn+1)− γ(x, tn)}dx−
∫
∂Ωtn

β(x, tn)w(x, tn)∇c(x, tn+1) · nds

−
∫

Ωtn
β(x, tn)(∇w(x, tn)) · (∇c(x, tn+1))dx = 0

and the second equation is achieved by applying integration by parts to the term with the Laplace operator.
Additionally, the surface integral term can be set to zero by carefully choosing the test function:∫

Ωtn
w(x, tn){α(x, tn)c(x, tn+1)− γ(x, tn)}dx+

∫
Ωtn

β(x, tn)(∇w(x, tn)) · (∇c(x, tn+1))dx = 0

The next step is MLS style spacial discretization. Following [9], we adopt the MLS shape function
Θi(x) at each node near a particle to discretize both the test function and the physical fields. That is, we
do

wn = wni Θi, cn = cnj Θj, cn+1 = cn+1
j Θj. (8)

and notice that cn has been embedded in γ. We refer to [9] for the construction of the MLS shape functions
in a way that is consistent with Element Free Galerkin (EFG) methods.

Then,∫
Ωtn

wni Θiα(x, tn)cnj Θjdx+

∫
Ωtn

β(x, tn)(wni ∇Θi) · (cnj ∇Θj)dx =

∫
Ωtn

wni Θiγ(x, tn)dx (9)

Utilizing the MLS shape functions avoids differentiating B-spline kernels in high dimensions. More
specifically, if a linear polynomial space with quadratic B-spline weighting is chosen for the MLS recon-
struction, we have [9]

∇Θi(xp) = D−1
p Ni(x

n
p)(xi − xnp),

where Dp = 1
4∆x2 for quadratic B-spline weighting in Ni(x).

3.3 Lumped Mass

Similarly to how the mass matrix was defined in the momentum case, we can define a “phase field mass”
matrix

Mn
ij =

∫
Ωtn

Θi(x)α(x, tn)Θj(x)dx

Adopting one point quadrature over particle domains

≈
∑
p

V np αpΘi(xp)Θj(xp)

where V np is the current volume for particle p.
Now we can rewrite Equation (9) as

Mn
ijw

n
i c
n
j +

∫
Ωtn

β(wni ∇Θi) · (cnj ∇Θj)dx =

∫
Ωtn

wni Θiγ(x, tn)dx

and choose

wni =

{
1, i = î
0, otherwise

6

then we have, for each node î,

Mn
îj
cnj +

∫
Ωtn

β(∇Θî) · (c
n
j ∇Θj)dx =

∫
Ωtn

Θîγ(x, tn)dx (10)

We can further apply the mass lumping strategy to reduce a full mass matrix into a diagonal matrix.
Let’s call each new entry M̂n

i , then

M̂n
i =

∑
j

Mn
ij

=
∑
j

∫
Ωtn

Θi(x)α(x, tn)Θj(x)dx

=

∫
Ωtn

Θi(x)α(x, tn)dx

≈
∑
p

VpαpΘi(xp).

We use Mn
îj
≈ M̂n

î
δ̂ij to rewrite Equation 9:

M̂n
î
cni +

∫
Ωtn

β(∇Θî) · (c
n
j ∇Θj)dx =

∫
Ωtn

Θîγ(x, tn)dx (11)

Let’s replace î with i to get the final equation for the phase field on node i:

M̂n
i c

n
i +

∫
Ωtn

β(∇Θi) · (cnj ∇Θj)dx =

∫
Ωtn

Θiγ(x, tn)dx (12)

3.4 The force term

The right side of Eqn. (12) is: ∫
Ωtn

Θiγ(x, tn)dx ≈
∑
p

Θi(xp)γ(xp, t
n)V np . (13)

And the only term left is the so-called ‘internal force’:∫
Ωtn

β(x, tn)(∇Θi(xp)) · (cnj ∇Θj(xp))dx ≈
∑
p

β(xp, t
n)(∇Θi(xp)) · (cnj ∇Θj(xp))V

n
p

=
∑
p

∑
j

β(xp, t
n)(∇Θi(xp)) · (cnj ∇Θj(xp))V

n
p

=
∑
j

[
∑
p

β(xp, t
n)V np (∇Θi(xp)) · (∇Θj(xp))]c

n
j

=
∑
j

Hijc
n
j

where Hij =
∑
p β(xp, t

n)V np (∇Θi(xp)) · (∇Θj(xp)).

3.5 Summary

Finally, let’s summarize the implicit formulation of the phase field assuming no boundary flux:

(M +H)c = r (14)

where c is the vector of all nodal unknowns of phase field, M is diagonal mass matrix, H is an MPM-based
discrete Laplace operator, and r is the right hand side as in Eqn. (13). The resulting implicit system is
positive semidefinite and can be efficiently solved with the standard Conjugate Gradient solver with a
diagonal preconditioner.

7

4 Elasticity

In this section, all F , J , etc. are assumed to be the elastic quantities with superscript “E” omitted.

4.1 Energy

The energy density of the Neo-Hookean model [19] is

Ψµ(F) =
µ

2
(tr(F TF)− d) (15)

Ψκ(J) =
κ

2
(
J2 − 1

2
− log(J))

Ψ̂ = Ψµ(F) + Ψκ(J)

where µ and κ = 2
3µ+λ are shearing and bulk modulus. Similar to [17], we first decompose the deformation

gradient into the deviatoric and dilational/volumetric parts as:

F = F devF vol

F dev = (J)−
1
dF

F vol = (J)
1
d I;

Second, we change the definition of energy density by replacing Ψµ(F) with Ψµ(JaF) where a = − 1
d ; thus,

the new energy is:

Ψ = Ψµ(JaF) + Ψκ(J).

Since the first term relies only on F dev while the second term relies only on F vol (i.e. J), we can re-label
them as

Ψ = Ψdev(JaF) + Ψvol(J).

Furthermore, we define

Ψ+ =

{
Ψdev(JaF) + Ψvol(F) J ≥ 1

Ψdev(JaF) J < 1
, Ψ− =

{
0 J ≥ 1

Ψvol(F) J < 1

where Ψ+ can be penalized by a factor of g(c) while keeping the Ψ− unchanged. This is visualized in Fig. 1
both through varying the phase variable, c, and through decomposing the total energy into its components
for a single c value.

4.2 Stress

We compute the stress for both components separately.

4.2.1 Deviatoric stress

P dev =
∂Ψdev

∂F

∣∣∣∣
JaF

:
∂(JaF)

∂F

The left part is easy to show by putting δ on Eqn. (15):

δΨµ =
µ

2
δ(F : F)

= µF : δF ,

8

Figure 1: Split Energy Density with Degradation. (Left) Total energy, Ψtotal = Ψ, plotted for three
damage values; note the overlapping energies when σ1 and σ2 are below 1. (Right) Decomposition of Ψ
into its components, Ψdegraded = g(c)Ψ+ and Ψ−.

thus ∂Ψµ

∂F = µF . The right part can be derived,

∂(JaF)

∂F
= F

∂(Ja)

∂F
+ Ja

∂(F)

∂F

= Ja(aFF−T + I4th)

where I4th is the fourth order identity tensor which can be defined as

I4th = δikδjlei ⊗ ej ⊗ ek ⊗ el,

and we used

∂J

∂F
= JF−T .

Thus we can get,

P dev = µJaF : Ja(aFF−T + I4th)

= µJ2a(aF : FF−T + F). (16)

Remember Kirchhoff stress is defined as τ dev = P devF T ,

τ dev = µJ2a(a tr(b)I + b)

= µJ−
2
d (b− 1

d
tr(b)I)

= µJ−
2
d dev(b)

where b = FF T is the left Cauchy-Green strain.

4.2.2 Volumetric stress

P vol =
∂Ψvol(J)

∂F
= JΨvol′(J)F−T (17)

τ vol = JΨvol′(J)I

4.2.3 Total stress

Ultimately, we have the total stress and its deviatoric part s:

τ = µJE,−2/ddev(bE) + Ψvol′(JE)JEI (18)

s = dev(τ) = µJE,−2/ddev(bE) (19)

since dev(I) = 0 and dev(dev(A)) = dev(A) for any matrix A.

9

4.3 Stress derivative

4.3.1 Deviatoric stress derivative

Applying the differential operator to both sides of Eqn. (16), we get:

δP dev =δ
(
µJ2a(aF : FF−T + F)

)
=2aµJ2a−1δJ(aF : FF−T + F)

+ µJ2a
(
2aF : δFF−T + aF : F δ(F−T) + δF

)
=2aµJ2aF−T : δF (aF : FF−T + F)

+ µJ2a
(
2aF : δFF−T + aF : F δ(F−T) + δF

)
.

We can compute δF−T by applying differential operator to (FF−1)T = I as:

δ
(
(FF−1)T

)
= δI = 0

δF−TF T + F−T δF T = 0

δF−T = −F−T δF TF−T = −(F−1δFF−1)T .

Thus, we have:

δP dev =2aµJ2aF−T : δF (aF : FF−T + F)

+ µJ2a
(
2aF : δFF−T − aF : F (F−1δFF−1)T + δF

)
.

4.3.2 Volumetric stress derivative

Similarly, applying the differential operator to both sides of Eqn. (17), we get:

δP vol = δ
(
JΨvol′(J)F−T

)
= δJΨvol′(J)F−T + Jδ(Ψvol′(J))F−T + JΨvol′(J)δ(F−T)

= δJΨvol′(J)F−T + JδJΨvol′′(J)F−T + JΨvol′(J)δ(F−T).

5 Plasticity

To discuss the plasticity theory, we need first to decompose the deformation gradient into two parts

F = FEF P .

Only the elastic part, FE , contributes to the elastic potential energy and the corresponding elastic forces.
Consider principal stress space: for a pure elastic material, principal stress can reside at any point,

indicating either compression or tension. However, for plastic materials, only a subset of the whole stress
space is admissible: this is called the yield surface. When a material’s stress remains inside of the yield
surface, it behaves exactly as an elastic object. However, when stress happens to cross the surface due to
discretized time integration, we must find a direction to project it back onto the surface. Using our non-
associated method the direction is relatively easy to find, but the exact distance of projection is trickier.
In the following subsections, for each material, we will discuss the corresponding yield surface, projection
direction, and projection distance, respectively.

5.1 The basics

We define the left elastic Cauchy-Green strain and right plastic Cauchy-Green strain,

bE = FEFE
T

CP = F P
T
F P

10

and they relate to each other via

bE = FCP−1
F T .

Consider the evolution of bE :

DbE

Dt
=
D(FCP−1

F T)

Dt

=
DF

Dt
CP−1

F T + FCP−1DF T

Dt
+ F

DCP−1

Dt
F T . (20)

We apply an operator splitting scheme similar to the one used in incompressible fluid simulation [4] to
compute the updated bE .

In Step 1, the first two terms in Eqn. (20) can be used to compute an intermediate solution b̂E by
solving

DbE

Dt
=
DF

Dt
CP−1

F T + FCP−1DF T

Dt
. (21)

In practice, we simply perform a “trial” elastic step to get b̂E = bE,tr.
In Step 2, we need to solve

DbE

Dt
= F

DCP−1

Dt
F T (22)

with the intermediate solution as the initial value condition. To simplify the problem, we can define the
Lie derivative of bE to be the remaining part, and give it a specific form

LvbE := F
DCP−1

Dt
F T = −2γGbE . (23)

In this way, different flow directions can be achieved simply by applying different G. The most general
two choices are G = ∂y

∂τ for associated flow, and G = dev(∂y∂τ) for non-associated flow where y(τ) defines
the yield surface. Given a particular direction, we can then compute the flow distance needed to move the
material back to the yield surface.

There are two ways to solve the ODE:

1. Exponential integrator: [11] and [1] take this approach and write

bE,n+1 = e−2δγGbE,tr. (24)

2. Backward Euler: In [3] and [15], the ODE is discretized as

bE,n+1 − bE,tr = −2δγGbE,n+1. (25)

Notice the unknown δγ represents the distance we want to solve. In this paper, we choose the second
method to do the projection. We can expand the right side to get

bE,n+1 − bE,tr = −2δγG[dev(bE,n+1) +
1

d
tr(bE,n+1)I] (26)

As proved in [11], it becomes much more convenient to resolve plasticity projection in the diagonal
space of the deformation gradient. From here on, we assume all variables, such as b, G, τ , s, etc., are in
diagonal space.

11

Here we define the pressure p from the Kirchhoff stress

p = −1

d
tr(τ).

It represents the value projected to the hydrostatic axis in stress space. We further define q as the value
corresponding to the axis orthogonal to the hydrostatic axis by

q =

√
6− d

2
‖s‖

A pair of p and q can be used to replace the original Kirchhoff stress to represent the yield surface as
y(p, q) = 0.

We list some key equations here:

∂p

∂τ
= −1

d
1

∂q

∂τ
=
∂q

∂s
:
∂s

∂τ

=

√
6− d

2

s

‖s‖

5.2 Cam Clay

We adopt the definition of the Cohesive Cam Clay (CCC) yield surface from [7]

y(p, q) = q2(1 + 2β) +M2(p+ βp0)(p− p0)

where β is the cohesion coefficient, M controls the friction; meanwhile, p0 relates to the hardening required
to deliver the correct behavior of particular materials and has the form

p0 = Ksinh(ξmax(−α, 0)) (27)

where K = 2
3µ+ λ is the bulk modulus, ξ is the hardening factor, and α is a hardening parameter we use

to track our fracture-friendly hardening (it is initialized to be log(JP) but will not always be equal, see
§5.2.2).

We rewrite the Kirchhoff stress here, but now with the superscript E:

τ = µJE,−
2
d dev(bE) + JEΨvol′(JE)1.

So,

∂y

∂τ
= 2q(1 + 2β)

∂q

∂τ
+M2(p− p0)

∂p

∂τ
+M2(p+ βp0)

∂p

∂τ

= 2q(1 + 2β)

√
6− d

2

s

‖s‖
− M2(2p+ (β − 1)p0)

d
1.

Now we compute G.

G = dev(
∂y

∂τ
)

= 2q(1 + 2β)

√
6− d

2

s

‖s‖

12

Rewrite Eqn. (26) by replacing dev(bE,n+1) = 1
µ (JE)

2
d s from Eqn. (19),

bE,n+1 − bE,tr = −2δγG[dev(bE,n+1) +
1

d
tr(bE,n+1)1] (28)

The first term is assumed to be small when we only consider simulating relatively stiff materials; thus, we
have

bE,n+1 − bE,tr = −q(1 + 2β)
√

6− d1

d
tr(bE,n+1)δγ

s

‖s‖

= −q(1 + 2β)
√

6− d1

d
tr(bE,n+1)δγ

µJ−
2
d dev(bE,n+1)

‖s‖
.

By appling dev() operator to both sides, and replacing dev(bE,n+1) = 1
µ (JE)

2
d s, it is easy to see str() and

sn+1 are vectors in the same direction, i.e.,

sn+1

‖sn+1‖
=

str

‖str‖
. (29)

By applying tr operator to both sides, we get

tr(bE,n+1) = tr(bE,tr). (30)

We apply the non-associated flow rule, which implies the plasticity preserves volume (JP)n+1 = (JP)tr.
Furthermore, the total deformation gradient is also not changed by plasticity projection. Thus (JE)n+1 =
(JE)tr, and pn+1 = ptr. So we rewrite y as follows noting that we have also substituted in qn+1 =√

6−d
2 ||s

n+1||:

y =
6− d

2
‖sn+1‖2(1 + 2β) +M2(ptr + βp0)(ptr − p0) = 0. (31)

Note that this expression for y does not always have a solution and is dependent on our value of ptr.
More specifically, we compare our computed ptr with the known minimum and maximum p values that lie
on the ellipsoid: pmax = p0 and pmin = −βp0. These can be derived easily using the fact that on the p-axis
we know q = 0 meaning that the entire first term is 0.

Fortunately, with this new expression for y, we have everything we need to compute bE,n+1 and thus
F n+1. At this point, we have bE,tr, so we can use this to compute ptr as follows:

ptr = −1

d
tr

(
µJE,

−2
d dev(bE,tr) + JE,trΨvol′(JE,tr)1

)
= −JE,trΨvol′(JE,tr).

Now that we have ptr, we must use this value to determine which of three cases we must use to proceed
with any further computation. The cases are broken down as follows and are graphically illustrated in
Fig. 2:

• Case 1: ptr > p0

• Case 2: ptr < −βp0

• Case 3: −βp0 < ptr < p0

In this section we will assume that we have found that we are within the p range associated with Case
3 (see next subsection for Case 1 and Case 2).

With ptr we may compute ||sn+1|| using Eqn. (31) as shown below:

13

Figure 2: Projection Cases. Non-Associated Cam Clay yield surface shown in 2D Kirchhoff stress space
with each of the three possible cases highlighted for clarity

||sn+1|| = M

√
2(ptr + βp0)(ptr − p0)

(d− 6)(1 + 2β)
.

Now, using Eqn. (29) we can compute sn+1 from ||sn+1|| as follows:

sn+1 =
str

||str||
||sn+1||.

Now, using Eqn. (41) we can use sn+1 to find dev(bE,n+1):

dev(bE,n+1) =
sn+1

µJ
−2
d

.

Additionally, from Eqn. (30) we see that with our computed bE,tr we can compute the desired tr(bE,n+1)
as follows:

tr(bE,n+1) = tr(bE,tr) = tr(FE,trFE,tr
T

).

Now that we have both dev(bE,n+1) and tr(bE,n+1) we can reformulate the definition of the deviatoric
operator to solve for bE,n+1 as below:

bE,n+1 = dev(bE,n+1) +
1

d
tr(bE,n+1)1.

Finally, now that we have bE,n+1 we can at last compute the desired FE,n+1 based on the definition of
b:

FE,n+1 = bE,n+1(FE,n+1)−T .

14

5.2.1 Case 1 and Case 2

Recall that Eqn. (31) does not always have a solution. Particularly, when ptr > p0 or ptr < −βp0, there is
no solution. In these two cases we need to project to the tips of the ellipsoid. More specifically for each
case:

• Case 1: pn+1 = pmax = p0

• Case 2: pn+1 = pmin = −βp0

With these values for pn+1, we can compute JE,n+1 by plugging Eqn. (18) into the definition of p and then

subsequently plugging in Ψvol′ to get the following compact expression (note the trace of the first term is
0 in Eqn. (18)):

JE,n+1 =

√
−2pn+1

κ
+ 1. (32)

Thus, we can compute JE,n+1 for each case like so:

• Case 1: JE,n+1 =
√
−2p0
κ + 1

• Case 2: JE,n+1 =
√

2βp0
κ + 1

Finally, we can reconstruct the principal stretch as:

ΣE,n+1 = (JE,n+1)
1
d I.

.

5.2.2 Hardening

In order to track hardening, we focus on updating the volumetric and shear plastic deformation with a
hardening parameter α. For the first two cases, where dilational motion is dominant, α encodes changes
in log(JP), which again can be achieved by using the relationship between the decomposed deformation
gradient before and after the second ODE solve: F = FE,trFP,n = FE,n+1FP,n+1

We can take the determinant of both sides to get the following relationship that allows us to straight-
forwardly update α:

αn+1 = log(
JE,tr

JE,n+1
) + αn (33)

As such, in cases 1 and 2 we can simply update α by adding log(JE,tr/JE,n+1) to it since it already
contains the value of the previous α.

However, in case 3, we have plastic flow enduring pure shearing, and our non-associated flow rule does
not change JP , making this simple hardening inapplicable. Instead, we propose a novel approach that
allows volume-preserving fractures to occur under pure shearing while still updating the yield surface with
appropriate hardening. It is inspired by the observation that on the larger p side of the ellipsoid, we
want to enforce material hardening, and on the other side, material softening (allowing natural fracture).
Therefore, we define the intersection point (p×, q×) to be the common point shared both by the yield
surface ellipsoid and by the line connecting the trial state (ptr, qtr) and the ellipsoid center (pc, qc) (see
Fig. 3). Specifically, the form of the line is as follows:

(p×, q×) = (pc, qc) + l
(pc, qc)− (ptr, qtr)

||(pc, qc)− (ptr, qtr)||
.

15

Figure 3: Case 3 Hardening. Illustration of our fracture-friendly hardening for Case 3 hardening of the
yield surface. The grey points represent intersections between the line from (ptr, qtr) to (pc, qc) and the
yield surface itself. We choose between p1 and p2 by determining which one is on the same side as ptr.

Additionally, we can formulate the yield surface in terms of these intersection points as shown below:

0 = q×
2
(1 + 2β) +M2(p× + βp0)(p× − p0).

With these two equations we can plug the first into the second to get a quadratic equation of the form:

Al2 +Bl + C = 0.

Once we have expressions for A, B, and C, we can simply use the quadratic formula to find our two
solutions for l. Further, it is useful to define the two components of the direction vector in terms of p and
q separately. We will call these Dp and Dq respectively and they have the following forms:

Dp =
pc − ptr

||(pc, qc)− (ptr, qtr)||
,

Dq =
qc − qtr

||(pc, qc)− (ptr, qtr)||
.

With these defined, the expressions for A, B, and C are straightforward to compute with one additional
detail about qc. Since the center of the ellipse is on the p-axis, we know that qc = 0 and this will help us
reduce the expressions for A,B,C even further. These coefficients take the following form:

A = M2D2
p +D2

q(1 + 2β),

B = M2Dp(2p
c − p0 + βp0),

C = M2(pc + βp0)(pc − p0).

Once we have the coefficients, we can use the quadratic formula to compute two solutions l1 and l2.
Then, we may use these to get our candidate values for p× through the expression:

(pi, qi) = (pc, qc) + li
(pc, qc)− (ptr, qtr)

||(pc, qc)− (ptr, qtr)||

With this, we get two values p1 and p2. In order to determine which of the solutions we want, we use
a simple sign test to determine which point is on the same side of the center as ptr. More specifically, we

16

keep the one which fulfills (ptr − pc)(p× − pc) > 0. Choosing the correct side of the ellipsoid captures the
damage caused by shearing, and triggers more intensive softening when the shearing happens quickly.

From p× we can compute JE,×, which is employed to perform the update to α similar to the first two

cases as log(J
E,tr

JE,×
). Note that the reason we introduce the variable α is that in this hardening case α is no

longer the true log(JP) but instead a hardening state variable that we track.

5.3 von Mises

In the case of von Mises, we have

y(τ) =
√
s : s−

√
2

6− d
τy,

s = τ − 1

d
tr(τ),

∂y

∂s
=

s

‖s‖
,

∂y

∂τ
=

s

‖s‖
,

where the last equality can be shown with chain rule.
We then adopt the BE discretization of the flow rule (Eqn. 25): bE,n+1−bE,tr = −2δγG(bE,n+1)bE,n+1,

where G = ∂y
∂τ = s

‖s‖ . Therefore

bE,n+1 − bE,tr = −2δγGn+1

(
dev(bE,n+1) +

1

d
tr(bE,n+1)1

)
.

Further plugging in the result from our energy that s = µJE,−2/ddev(bE), it becomes

bE,n+1 − bE,tr = −2δγ
s

‖s‖

(
s

µJE,−2/d
+

1

d
tr(bE,n+1)1

)
= −2δγJE,2/d

s

‖s‖
s

‖s‖
‖s‖
µ
− 2δγ

1

d
tr(bE,n+1)

s

‖s‖
.

According to [16], the first term is close to 10−3 for most metals, and thus can be neglected. Thus

bE,n+1 − bE,tr = −2δγ
1

d
tr(bE,n+1)

sn+1

‖sn+1‖
. (34)

Talking its dev() and tr() give

dev(bE,n+1)− dev(bE,tr) = −2δγ
1

d
tr(bE,n+1)

sn+1

‖sn+1‖
(35)

tr(bE,n+1)− tr(bE,tr) = 0. (36)

Plugging Eqn 19 and Eqn 36 into Eqn 35 gives

1

µJE,−2/d
(sn+1 − str) = −2δγ

1

d
tr(bE,tr)

sn+1

‖sn+1‖
, (37)

which reveals sn+1 and str are along the same direction, i.e.,

sn+1

‖sn+1‖
=

str

‖str‖
.

17

Plugging this back into Eqn. (37) gives

1

µJE,−2/d
(
str

‖str‖
‖sn+1‖ − str) = −2δγ

1

d
tr(bE,tr)

str

‖str‖
.

Combining this with yield function ‖sn+1‖ −
√

2
6−dτy = 0 allows us to solve for δγ analytically:

‖str‖ − 2

d
JE,−2/dµtr(bE,tr)δγ =

√
2

6− d
τy. (38)

After getting δγ, we can reconstruct bE,n+1 (and thus FE,n+1) using

bE,n+1 − bE,tr = −2δγ
1

d
tr(bE,tr)

str

‖str‖
. (39)

5.4 Drucker Prager

We present here important, related equations:

τ = µJE,−2/ddev(bE) + Ψvol′(JE)JE1 (40)

s = dev(τ) = µJE,−2/ddev(bE) (41)

y = cf tr(τ) + ‖dev(τ)‖ − cc (42)

∂y

∂τ
= cf1 +

s

‖s‖
(43)

G = dev(
∂y

∂τ
) =

s

‖s‖
(44)

Following the same steps as in von Mises, we get the same flow rule (Eqn. 34) by making an assumption
of a small s/µ term,

bE,n+1 − bE,tr = −2δγ
1

d
tr(bE,n+1)

sn+1

‖sn+1‖

dev(bE,n+1)− dev(bE,tr) = −2δγ
1

d
tr(bE,n+1)

sn+1

‖sn+1‖
tr(bE,n+1)− tr(bE,tr) = 0

1

µJE,−2/d
(sn+1 − str) = −2δγ

1

d
tr(bE,tr)

sn+1

‖sn+1‖
sn+1

‖sn+1‖
=

str

‖str‖
1

µJE,−2/d
(
str

‖str‖
‖sn+1‖ − str) = −2δγ

1

d
tr(bE,tr)

str

‖str‖
.

From τ = µJE,−2/ddev(bE) + Ψvol′(JE)JE1 we know

tr(τn+1) = tr(τ tr)

by noticing that JE,n+1 = JE,tr due to our volume-preserving plasticity construction. Further using this
property in the yield function 0 = cf tr(τn+1) + ‖sn+1‖ − cc we know

‖sn+1‖ = cc − cf tr(τ tr).

18

This allows us to write the equation for δγ:

‖str‖ − 2

d
JE,−2/dµtr(bE,tr)δγ = cc − cf tr(τ tr) (45)

bE,n+1 − bE,tr = −δγ 2

d
tr(bE,tr)

str

‖str‖
. (46)

5.5 Condition for Volume Preserving Plasticity

Here, we derive the condition that JP = 1 (plastic flow is volume-preserving).

Theorem 1 JP = 1 is equivalent to tr(FE ˙F PF P
−1
FE
−1

) = 0

˙JP = JPF P
−T

: ˙F P ,

tr(FE ˙F PF P
−1
FE
−1

) = F P
−T

: ˙F P .

Theorem 2 For isotropic elasticity, τbE = bEτ and τbE
−1

= bE
−1
τ

This can be easily seen by writing τ = 2ΨIb
E + 4ΨIIb

E2
+ 2IIIbEΨIIII and noticing that both τ and

bE are symmetric [2].
Now, we follow Chapter 7 of [2] to introduce notations. We can define ẇ to be the internal rate of work

per unit initial volume done by the stress. I.e.,

ẇ = τ : l,

where l is the velocity gradient l = Ḟ F−1. According to Example 7.1 of [2] (which uses Theorem 2), it
can be proven that

ẇ = τ : l =
1

2
τ :

(
dbE

dt

∣∣∣∣
CP=const

bE
−1
)
.

Example 7.2 of [2] further proves that

lE := ˙FEFE
−1

ẇE = τ : lE = τ :

(
1

2

dbE

dt
bE
−1
)
.

Then lP can be introduced by showing (see Eqn 7.17 of [2])

ẇP = τ : lP

lP := −1

2

dbE

dt

∣∣∣∣
F=const

bE
−1

= −1

2
Lv(bE)bE

−1
.

According to Example 7.3 of [2],

lP := −1

2

dbE

dt

∣∣∣∣
F=const

bE
−1

=
1

2
FCP−1

ĊPF−1.

And it is easy to prove using index notation that

tr(
1

2
FCP−1

ĊPF−1) = tr(FE ˙F PF P
−1
FE
−1

).

Therefore, according to Theorem 1 we know tr(lP) = 0 implies JP = 1. Note that in our plasticity,
lP = γG. Thus, choosing a trace-free G guarantees JP = 1.

19

6 Local vs. Non-local CDM

In the main paper we refer to the advantages and challenges local and non-local continuum damage methods
pose [18], and we present more concrete comparisons here for further discussion. Local continuum damage
mechanics models have shown to be effective for meshed fracture simulation, but the crack propagation
produced is notoriously dependent on mesh resolution and direction [8]. However, it is unclear whether
this effect is present when paired with a meshless discretization method such as MPM. As such, here we
compare the stress threshold based local damage approach outlined in [6] with our phase field method to
show the advantages of our non-local damage phase field formulation (specifically within the realm of MPM
discretization).

6.1 Fracture Modes

To capture mode 1 (Fig. 4) and mode 2 (Fig. 5) fractures with local and non-local damage approaches, we
follow experimental setups popular in mechanics. In each demo the material is a 0.4 by 0.4 square with
E = 1000, ν = 0.25, and ρ = 2. In all demos, the local CDM strain limit is σF = 5, the non-local CDM
energy release rate is G = 3.00 × 10−3, the mobility constant set to Mc = 0 for ease of comparison, and
the regularization parameter set to l0 = 0.4∆x. In Fig. 4 and Fig. 5 ∆x = 0.005 and ∆t = 8× 10−5. The
key difference between mode 1 and mode 2 setups lies in the boundary configuration. For mode 1 fracture,
the material is given an additional 0.02 units of material in the y direction above and below the square;
this material is added so that a sticky boundary can be inserted in the material and hold onto these added
material “handles.” The top boundary moves up with speed 0.05, and the bottom boundary moves at the
same speed, but downwards. Conversely, for mode 2 fracture, there is only one moving boundary; the top
boundary touches the top of the original square but uses MPM sticky collision to cause friction as this
boundary moves to the right at speed 0.025. There are two additional directional boundaries added for
mode 2: a bottom boundary that touches the bottom of the original square with MPM slippery collision,
and a half-height boundary on the bottom left to hold the bottom left portion of the square in place. This
configuration effectively gives the intraplanar opposing forces we associate with mode 2 fracture.

First, we present the comparison between local and non-local damage for mode 1 in Fig. 4. Though
this mode of fracture does appear to be captured by both methods, the local damage approach produces
jagged and less visually-plausible paths than the smooth, continuous crack tip formed through our PFF
approach. Similarly, in Fig. 5 we observe again that both methods qualitatively appear to capture mode
2 fracture; however, the crack path simulated with local damage does not follow the typical curvature
associated with mode 2 fracture in mechanics, while CD-MPM clearly produces a much smoother and clear
curve that more closely matches mode 2 fracture results in mechanics. Note that due to MPM’s treatment
of boundaries, the boundaries themselves appear to affect the crack path when it reaches them (note the
slight change in curvature at the boundary in both methods). Ultimately, it appears that local damage
struggles mainly with capturing mode 2 fracture, while our non-local PFF method qualitatively captures
both modes with a smooth crack representation.

6.2 Resolution Dependence

The experiments in Fig. 6 and Fig. 7 use the aforementioned mode 2 fracture configuration with the only
changes being ∆x and ∆t as noted in the figure caption. In these figures we compare local and non-
local damage methods for mode 2 fracture at different resolutions. In Fig. 6 there is a clear difference
in crack speed propagation: higher resolutions result in faster cracks, demonstrating a strong resolution
dependency. Conversely, in Fig. 7, the visually identical crack speed of our non-local damage method
shows the resolution invariance of our phase-field approach. Ultimately, it is clear that CD-MPM is free
of the resolution dependence we can associate with local damage and this is very likely caused by the
regularization parameter, l0, used in our phase-field formulation to scale the crack radius. Through this
observation, we chose to always set l0 based on some proportion of simulation ∆x (l0 = 0.5∆x was often
sufficient). Thus, we have shown that under the MPM discretization scheme, local CDM is in fact grid
resolution dependent while the phase-field non-local approach is MPM grid resolution invariant.

20

Figure 4: Mode 1 Fracture. (Left) Local CDM produces jagged, unnatural mode 1 fracture; (Right)
Our non-local CDM approach produces a smooth, continuous crack tip for mode 1 fracture

Figure 5: Mode 2 Fracture. (Left) Local CDM produces a jagged crack path that has little curvature we
expect from mode 2 fracture; (Right) Our non-local CDM approach produces a smooth crack front with
clear curvature that echoes classical mode 2 fracture results.

Figure 6: Local CDM Resolution Dependency. (Left) Local CDM run for mode 2 fracture at ∆x =
0.01 and ∆t = 4 × 10−5. Note the crack has not propagated to the boundary yet; (Right) Local CDM
run for mode 2 fracture at ∆x = 0.0025 and ∆t = 1.6 × 10−6. Note that here, the crack has reached the
boundary indicating that higher resolutions (lower ∆x) lead to faster crack propagation for local CDM
methods.

21

Figure 7: Non-Local CDM Resolution Invariance. (Left) Non-local CDM run for mode 2 fracture at
∆x = 0.01 and ∆t = 4× 10−5. Note the crack tip (saturated red region) has propagated to the boundary;
(Right) Non-local CDM run for mode 2 fracture at ∆x = 0.0025 and ∆t = 1.6 × 10−6. Note that the
crack tip has also just reached the boundary here, indicating that our non-local CDM method is resolution
invariant.

References

[1] F. Auricchio and R.L. Taylor. A return-map algorithm for general associative isotropic elasto-plastic
materials in large deformation regimes. International Journal of Plasticity, 15(12):1359–1378, 1999.

[2] J. Bonet and R. Wood. Nonlinear continuum mechanics for finite element analysis. Cambridge
University Press, 2008.

[3] M. J. Borden, T. J.R. Hughes, C. M. Landis, A. Anvari, and I. J. Lee. A phase-field formulation
for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and
stress triaxiality effects. Computer Methods in Applied Mechanics and Engineering, 312:130–166, 2016.

[4] R. Bridson. Fluid simulation for computer graphics. Taylor & Francis, 2008.

[5] K. Cahill. Physical mathematics. Cambridge University Press, 2013.

[6] M. Cervera and M. Chiumenti. Mesh objective tensile cracking via a local continuum damage model
and a crack tracking technique. Computer Methods in Applied Mechanics and Engineering, 196(1-
3):304–320, 2006.

[7] J. Gaume, T. Gast, J. Teran, A. van Herwijnen, and C. Jiang. Dynamic anticrack propagation in
snow. Nature communications, 9(1):3047, 2018.

[8] P. Grassl and M. Jirásek. On mesh bias of local damage models for concrete. 01 2004.

[9] Y. Hu, Y. Fang, Z. Ge, Z. Qu, Y. Zhu, A. Pradhana, and C. Jiang. A moving least squares material
point method with displacement discontinuity and two-way rigid body coupling. ACM Transactions
on Graphics (TOG), 37(4):150, 2018.

[10] C. Jiang, C. Schroeder, J. Teran, A. Stomakhin, and A. Selle. The material point method for simulating
continuum materials. In ACM SIGGRAPH 2016 Course, pages 24:1–24:52, 2016.

[11] G. Klár, T. Gast, A. Pradhana, C. Fu, C. Schroeder, C. Jiang, and J. Teran. Drucker-prager elasto-
plasticity for sand animation. ACM Trans Graph, 35(4):103:1–103:12, 2016.

22

[12] C. Kuhn and R. Müller. A continuum phase field model for fracture. Engineering Fracture Mechanics,
77(18):3625–3634, 2010.

[13] L. D. Landau and E. M. Lifshitz. The classical theory of fields. 1971.

[14] R. Radovitzky and M. Ortiz. Error estimation and adaptive meshing in strongly nonlinear dynamic
problems. Computer Methods in Applied Mechanics and Engineering, 172(1-4):203–240, 1999.

[15] J. C. Simo. A framework for finite strain elastoplasticity based on maximum plastic dissipation and the
multiplicative decomposition: Part i. continuum formulation. Computer methods in applied mechanics
and engineering, 66(2):199–219, 1988.

[16] J.C. Simo and C. Miehe. Associative coupled thermoplasticity at finite strains: Formulation, numerical
analysis and implementation. Computer Methods in Applied Mechanics and Engineering, 98(1):41–104,
1992.

[17] A. Stomakhin, C. Schroeder, C. Jiang, L. Chai, J. Teran, and A. Selle. Augmented MPM for phase-
change and varied materials. ACM Trans Graph, 33(4):138:1–138:11, 2014.

[18] J. Wolper, Y. Fang, M. Li, J. Lu, M. Gao, and C. Jiang. CD-MPM: Continuum damage material
point methods for dynamic fracture animation. ACM Trans. Graph., 38(4), July 2019.

[19] Y. Yue, B. Smith, P. Y. Chen, M. Chantharayukhonthorn, K. Kamrin, and E. Grinspun. Hybrid
grains: Adaptive coupling of discrete and continuum simulations of granular media. In SIGGRAPH
Asia 2018 Technical Papers, SIGGRAPH Asia ’18, pages 283:1–283:19, 2018.

23

	Pseudocode
	PFF-MPM Step
	NACC Plasticity

	Incremental Potential and Euler-Lagrangian Equations
	Momentum Conservation
	Phase-Field Evolution
	Parabolic Phase-field Evolution
	Alternative derivation with functional derivatives

	MLS-MPM Implicit Phase-Field Solver
	Weak Form
	MLS Shape Functions
	Lumped Mass
	The force term
	Summary

	Elasticity
	Energy
	Stress
	Deviatoric stress
	Volumetric stress
	Total stress

	Stress derivative
	Deviatoric stress derivative
	Volumetric stress derivative

	Plasticity
	The basics
	Cam Clay
	Case 1 and Case 2
	Hardening

	von Mises
	Drucker Prager
	Condition for Volume Preserving Plasticity

	Local vs. Non-local CDM
	Fracture Modes
	Resolution Dependence

