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Fig. 1. Our method easily captures the compliant and slowly-recovering behavior of a viscoelastic solid silicone rubber (left), as well as controllable flowing
and merging behavior of creamy dense fluid foam (right) in a unified framework.

Simulating viscoelastic polymers and polymeric fluids requires a robust and
accurate capture of elasticity and viscosity. The computation is known to
become very challenging under large deformations and high viscosity. Draw-
ing inspirations from return mapping based elastoplasticity treatment for
granular materials, we present a finite strain integration scheme for general
viscoelastic solids under arbitrarily large deformation and non-equilibrated
flow. Our scheme is based on a predictor-corrector exponential mapping
scheme on the principal strains from the deformation gradient, which closely
resembles the conventional treatment for elastoplasticity and allows straight-
forward implementation into any existing constitutive models. We develop
a new Material Point Method that is fully implicit on both elasticity and
inelasticity using augmented Lagrangian optimization with various precon-
ditioning strategies for highly efficient time integration. Our method not
only handles viscoelasticity but also supports existing elastoplastic models
including Drucker-Prager and von-Mises in a unified manner. We demon-
strate the efficacy of our framework on various examples showing intricate
and characteristic inelastic dynamics with competitive performance.
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1 INTRODUCTION
Many real-world materials and natural phenomena involve inelas-
tic deformation. Common examples include metal bending under
pressure, sand flowing down a slope, and whipped cream form-
ing a captivating shape on a cake. In computer graphics, since the
pioneering work of Terzopoulos et al. [1988; 1987], the study of
viscoelasticity, plasticity, and fracture has attracted increasing at-
tention from numerous researchers, not only due to the ubiquity of
these behaviors but also due to the complex and intriguing dynamics
they exhibit.
Recently, the Material Point Method (MPM) [Sulsky et al. 1995]

has gained popularity for inelastic materials due to its flexible
geometric representation using meshless particles. Since inelas-
tic objects tend to undergo extreme deformation with permanent
shape change from their rest configurations, representing them
with meshes as in the Finite Element Method (FEM) imposes the
additional difficulties of mesh distortion and tangling. MPM, on
the other hand, uses particles to track the history of all strain and
stress states and relies on a background grid to accurately evaluate
derivatives in force computations. The superior treatment of ex-
treme deformations and topology changes has enabled MPM to be
used for simulating many inelastic phenomena in computer graph-
ics, showcased by the successful simulation of materials such as
snow [Gaume et al. 2018; Stomakhin et al. 2013], sand [Daviet and
Bertails-Descoubes 2016; Klár et al. 2016; Yue et al. 2018], sponge
and foam [Ram et al. 2015], and non-Newtonian fluids [Yue et al.
2015].
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Compared to the prevalent use of finite strain plasticity in gran-
ular materials such as snow and sand [Stomakhin et al. 2013; Yue
et al. 2018], viscoelastic models are less developed for MPM in the
literature, despite its apparent applications in simulating a wide
variety of materials ranging from solid-like objects (such as soft
biological tissues, polymeric foams and silicone rubbers) to fluid-
like objects (such as whipped cream). The latter was investigated
by Ram et al. [2015] using the Oldroyd-B constitutive model for
describing viscoelastic shear-thinning fluids. Their formulation re-
lies on the discretization of the upper convected derivative of the
right Cauchy Green strain [Bonet and Wood 2008] and requires
considerable additional effort to combine with standard existing
MPM schemes formulated using the deformation gradient evolution
[Stomakhin et al. 2013]. Furthermore, the viscoelastic effect is fully
lagged in their formulation, resulting in a semi-implicit integration
scheme that may overestimate the elastic effect [Pradhana et al.
2017]. Around the same time, Yue et al. [2015] also simulated similar
Non-Newtonian fluid effects using a viscoplastic Bingham model
with a focus on dense foams.

Even though viscoplasticity and viscoelasticity are both contin-
uum mechanics models for describing rate-dependent effects and
have both been used for simulating foam and cream like materi-
als, their underlying principles are very different. Since we focus
on materials such as rubber polymers and solid foams with large
elastic deformation, we assume finite strain elasticity and ignore
the incompressible limit throughout the paper. Within this regime,
unlike Bingham plastic fluids, visco(elasto)plasticity assumes the
existence of yield stress like plasticity, and the material deforms
elastically without any rate-dependent plastic flow before yielding.
In contrast, viscoelasticity describes thermodynamic dissipation
from non-equilibrated (time-dependent) elastic deformation, which
always exists regardless of the severity of deformation as long as
the continuum is not at equilibrium. As the term itself suggests,
viscoelasticity utilizes elasticity for resisting large deformations and
viscosity for resisting rapid change of deformations.

Critical applications we focus on include both the behaviors of
solid materials like viscoelastic silicone rubber and solid foams (such
as mattresses), and the flowing and creamy behaviors of viscoelastic
fluids like dense liquid foams and melted cheese.

Another similar ingredient in physics-based simulation for dissi-
pative results is damping. Note that damping, such as the commonly
used Rayleigh damping in graphics, is essentially a response filter
that damps out high-frequency vibrations during elastic deforma-
tions. In this paper, we introduce an MPM transfer-based damping
scheme as well, and our viscoelasticity treatment should not be mis-
takenly treated as a damping scheme due to its principled physical
basis on non-equilibrated dynamics. In Table 1 we compare various
properties of inelastic models and damping.

We target the notable lack of an easy-to-implement viscoelasticity
treatment for MPM, and present a hybrid particle/grid numerical
framework for finite strain viscoelasticity based on decomposing
the deformation gradient into a viscous part and an elastic non-
equilibrated part. The resulting formulation for the modification of
the non-equilibrated elastic strain can be implemented in a predictor-
corrector algorithm that is remarkably similar to the exponential

Fig. 2. Car crash. Our ADMM solver handles von-Mises plasticity well as
demonstrated in this car crash scene. The cars quickly end up fully stopped
due to substantial plastic dissipation.

return mapping algorithm used for finite strain plasticity, thus en-
abling a straightforward implementation into any existing MPM
frameworks that already support plasticity.

For numerical integration, both explicit and implicitMPM schemes
are well suited for ourmodel. For stiff or highly viscousmaterials, im-
plicit integration is preferred to avoid small time steps. While New-
ton’s method has historically been the standard nonlinear implicit
solver for the Finite Element Method in computer graphics [Sifakis
and Barbič 2015], recent advances in the optimization-based refor-
mulation of backward Euler hyperelasticity [Gast et al. 2015] bring
alternative schemes to Newton’s method, such as Projective Dy-
namics [Bouaziz et al. 2014], Alternating Direction Methods of Mul-
tipliers (ADMM) [Overby et al. 2017] and Quasi-Newton methods
with L-BFGS [Liu et al. 2017]. Inspired by the ADMM formulation
for FEM hyperelasticity, we formulate our implicit MPM inelastic-
ity problem into a pseudo-optimization problem. Here we use the
term “pseudo-optimization” because we cannot explicitly express
the objective function as an energy. Regardless, we show that the
ideas of augmented Lagrangian and ADMM can still be applied to
our formulation, allowing efficient simulation of elastoplastic and
viscoelastic solids with backward Euler integration that avoids the
expensive solves associated with nonsymmetric global linear sys-
tems as in previous MPM works based on Newton’s method [Klár
et al. 2016].

In summary, the main contributions of our work are:
• An easy-to-implement non-equilibrated viscoelasticity treatment
for MPM that has a similar structure to the exponential return
mapping algorithm for elastoplasticity.

• The formulation of finite strain implicit elastoplasticity and vis-
coelasticity into a pseudo-optimization problem that allows an
augmented Lagrangian treatment with operator splitting.

• The extension of the ADMM solver into MPM, supporting the
simulation of common inelastic materials.

Table 1. Comparing properties of inelasticity and damping models.

Elastoplasticity Viscoplasticity Viscoelasticity Damping

Change of rest state ✓ ✓ ✗a ✗
Existence of yield stress ✓ ✓ ✗ ✗

Deformation rate dependent ✗ ✓ ✓ ✗
Dissipative ✓ ✓ ✓ ✓

aViscoelastic solids have similar rest shape to elastic ones; some viscoelastic fluids
(ignoring the incompressible limit) only have rest density.
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Fig. 3. Warrior. A long and thick viscoelastic sheet drops onto a rotating statue, producing complex folding behaviors.

• A numerical damping strategy based on the Rigid Particle-In-Cell
(RPIC) method [Jiang et al. 2015] that is unconditionally stable
and has equivalence to Newtonian viscosity.

We also explore several strategies to improve the convergence of
the optimization-based inelasticity solver in §7.3. We demonstrate
the efficacy of our method on materials ranging from compliant
and shape-recovering viscoelastic solids (Fig. 1, 5), to buckling and
coiling viscoelastic fluids (Fig. 1, 3), to yielding and flowing plas-
tic media (Fig. 7, 16, 2) with characteristic visual appearances and
competitive performance.

2 RELATED WORK
Inelasticity. Elasticmodels have been extensively studied in graph-

ics. With similar popularity, inelastic materials like foam (which un-
dergo rate-dependent or permanent distortion under external loads)
also attract much attention [Terzopoulos and Fleischer 1988]. Differ-
ent discretization methods have been proposed to model elastoplas-
ticity, including mesh-based methods [Wicke et al. 2010], particle-
based methods [Chentanez et al. 2016; Gerszewski et al. 2009; He
et al. 2018; Jones et al. 2014] and hybrid methods [Gao et al. 2017;
Gaume et al. 2018; Jiang et al. 2017; Klár et al. 2016].

Viscoelastic materials exhibit both viscous and elastic behaviors
under external loads. Simple models (e.g. the Maxwell model) can be
achieved by combining an elastic spring and a viscous damper as first
studied by [Terzopoulos and Fleischer 1988]. For viscoplasticity, the
deformation becomes unrecoverable when the loads reach yielding
points. In recent years, more and more works seek to simulate
viscoelasticity and viscoplasticity via two main strategies.

Works utilizing the first approach start from the Navier-Stokes
equations and add additional terms corresponding to elastic and
viscous forces to an incompressible liquid solver [Carlson et al. 2002;
Goktekin et al. 2004; Losasso et al. 2006; Rasmussen et al. 2004; Taka-
hashi et al. 2015, 2014]. These methods generate visually appealing
results but usually require performing an incompressibility projec-
tion for fluid motion, and it becomes more expensive when implicit
viscosity needs to be enforced with a separate linear solve. Batty
et al. [2008; 2011; 2012] extend this to thin sheets and accelerate
the computation by adaptively remeshing the background meshes.
Larionov et al. [2017] further improve the accuracy and realism
by solving a unified pressure and viscosity system. Barreiro et al.

[2017] employ a conformation tensor to capture a wide range of vis-
coelastic fluid behaviors. Zhu et al. [2015] simulate non-Newtonian
viscoplastic flow on flexible meshes.

The second direction is rooted in finite strain solid mechanics:
constitutive models are designed to relate the deformation strains to
the reactive forces. Early works include mesh-based Finite Element
methods [Bargteil et al. 2007; Wojtan and Turk 2008] which may
require frequent remeshing to avoid ill-conditioned system solves
under significant distortion. More recently, the hybrid particle-grid
MPM was demonstrated to be capable of simulating some viscoelas-
tic and viscoplastic materials [Ram et al. 2015; Yue et al. 2015] with-
out geometric difficulties. We build our method with MPM due to
this advantage.

Compared to most prior work, our method more easily captures
solid foam behavior under large deformation, including compliance
to gentle deformation and slow recovery to a memorized rest shape.
Examples include filled rubbers, polymers, and polymeric foams
(everyday objects like vehicle tires, sofas, mattresses, and pillows).
Additional major features of our model are (1) the unified treatment
of viscoelasticity and elastoplasticity with finite strain, (2) a uni-
fied constitutive model for controlling fluid (cream-like) and solid
(solid foam-like) behaviors, (3) an efficient implicit solver, and (4)
an intrinsic ability to couple with other materials due to the MPM
framework.

Optimization for Elasticity. Many equations in simulation can
be reformulated into equivalent optimization problems, enabling
more efficient and robust solvers. Teran et al. [2005] modify the
Hessian of the optimization function to enforce positive definite-
ness of the global stiffness matrix. Batty et al. [2007] propose a
variational interpretation of the traditional pressure projection in
fluid simulations by minimizing the kinetic energy under incom-
pressibility constraints. For dynamic elasticity, a balance between
inertia and the elastic potential needs to be computed instead. Due
to the stringent performance requirements, accuracy could be traded
for efficiency in real-time applications. Some recent works [Gast
et al. 2015; Liu et al. 2017] focus more on second-order Newton or
Quasi-Newton methods. Another trend in the literature is based
on first-order methods. Wang and Yin [Wang and Yang 2016] pro-
pose a gradient descent solver on GPU platforms. Local-global style
solvers [Bouaziz et al. 2014; Liu et al. 2013] alternate between small
local solves and a large but simple global solve. Earlier works are
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Fig. 4. The underlying viscoelastoplasticity model: 1D rheological model and
3D finite strain multiplicative decomposition of the deformation gradient.

restricted to quadratic energies. Overby et al. [2017] accommodate
arbitrary isotropic nonlinear elasticity using ADMM. Peng et al.
[2018] reinterpret the local-global steps as a fixed-point problem;
thus Anderson acceleration can be applied to accelerate the conver-
gence. We also introduce several practical strategies to improve the
convergence of our ADMM MPM inelasticity solver in §7.3.
As a natural extension, damping has been integrated into opti-

mization based elasticity integrators as in [Brown et al. 2018; Dinev
et al. 2018a,b; Gast et al. 2015; Li et al. 2018]. While some of them
are easy to implement, they may suffer from undesired artifacts
such as how Ether drag does not conserve linear momentum. On
the other hand, sophisticated alternatives could potentially require
intensive modifications to existing pipelines. Furthermore, most
methods cannot be interchangeably applied to both explicit and im-
plicit time integrations. In this work, we present an unconditionally
stable and straightforward damping method for MPM which is inte-
gration scheme invariant and momentum and angular momentum
preserving.
In this paper, we adopt an Augmented Lagrangian formulation

for the simulation of inelasticity within MPM. In the computational
fluid mechanics literature, Augmented Lagrangian methods using
similar variable splitting schemes have been applied to simulating
viscoplastic [Fortin and Glowinski 1983] and viscoelastic [Fortin
and Fortin 1989] flows. Generalized standard materials defined by
an elastic energy density and a dissipation potential also provide
another possibility for the energetic formulation of viscoelastic
materials [Le Tallec 1990; Mielke 2006].

Material Point Method. As a hybrid method that generalizes FLIP
[Zhu and Bridson 2005], MPM has become popular recently in the
graphics community due to its efficiency for simulating animations
with large deformations and large topology changes. It has proven
capable of capturing awide breadth of natural phenomena, including
both single-species materials, e.g., foam [Ram et al. 2015; Yue et al.
2015], snow [Gaume et al. 2018; Stomakhin et al. 2013], sand [Daviet
and Bertails-Descoubes 2016; Klár et al. 2016; Yue et al. 2018], cloth
[Guo et al. 2018; Jiang et al. 2017], fracture [Wretborn et al. 2017];
and multi-species multi-phases mixtures, e.g., fluid-solid mixture
[Fei et al. 2018; Gao et al. 2018a,b; Pradhana et al. 2017; Stomakhin
et al. 2014; Yan et al. 2018].

3 CONSTITUTIVE MODEL
Finite strain elastoplasticity has been widely adopted in much of
computer graphics research including both mesh-based FEM simu-
lations [Irving et al. 2004; Wojtan and Turk 2008] and MPM simu-
lations [Klár et al. 2016; Yue et al. 2018]. We refer to Simo’s article
[1992] and book [Simo and Hughes 2006] for a more detailed ex-
planation of the core theory. While viscoelastic fluids have been
largely studied in computer graphics [Barreiro et al. 2017; Batty et al.
2012; Ram et al. 2015], an alternative formulation with finite strains
for silicone rubber-like viscoelastic solids with plasticity-like simple
treatment has not been well described beyond the viscoplasticity
work of Bargteil and Wojtan et al. [2007; 2008]. In this section, we
present a highly flexible and easy-to-implement constitutive model
for finite strain viscoelasticity that supports large deformation.

3.1 Kinematics and Motivation
Our treatment for viscoelasticity is built upon the theory of Nedjar
[2002a] which accounts for the combination of viscoelasticity and
plasticity for large deformations. Note that to prevent non-physical
stress during rotation, a finite strain treatment is necessary for scenes
with large elastic deformation (such as silicone rubber). For mostly
fluid-like materials (toothpaste, liquid foam, cream etc.), adopting
a more straightforward linear model as in Goktekin et al.’s work
[2004] is also a favorable choice.

Let us assume a general viscoelastic material that also potentially
(but not necessarily) undergoes elastoplastic yielding. In the large
deformation regime, the deformation map from the material space
Ω0 (with coordinate X ) to the world space Ωn (with coordinate x )
is usually described as x = ϕ(X , t). As illustrated with the 1D rheo-
logical model in Fig. 4 (left), the simulated solid consists of a parallel
combination of (1) an elastic spring with a frictional element for plas-
ticity and (2) another spring with a viscous dash-pot element which
is assumed to capture the dissipation due to thermodynamic non-
equilibrium. When extending to 3D nonlinear material responses,
we characterize the generalization of this model with the multiplica-
tive decomposition of the deformation gradient F = ∂ϕ

∂X (X , t). As
demonstrated in Fig. 4 (right), F can be decomposed in two ways
[Govindjee and Reese 1997]:

F = FEFP = FN FV , (1)

where FE is the elastic deformation gradient at thermodynamic
equilibrium, FP is the plastic deformation gradient, FN is the non-
equilibrated elastic deformation gradient, and FV is the viscous
deformation gradient. Its 1D analogy directly motivates such a de-
composition:

(1) FP characterizes the response of plastic or frictional elements,
and FE is the elastic deformation when the whole system is
at equilibrium. This part of the model is time-independent.

(2) When the system is not at equilibrium, FN denotes a time-
dependent elastic response (analogous to the spring con-
nected to the dashpot in 1D). FV , representing the dashpot,
captures the viscous part of the deformation gradient due to
its rate of change and does not contribute to the total elastic
potential energy.
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Fig. 5. Viscoelastic silicone rubber complies to slow deformation. After sufficient relaxation and releasing, it slowly deforms back to its original shape due
to non-equilibrated viscosity.

Here the terms “equilibrated” and “non-equilibrated” parts corre-
spond to time-independent and viscous (time-dependent) parts of
the model. Note that for a purely viscoelastic solid without any
plasticity, we have FP = I and F = FE = FN FV . On the other hand,
for a purely elastoplastic solid without any viscosity, it is typical to
adopt F = FEFP [Simo 1992].
Besides our multiplicative decomposition in Eq. (1), there also

exist other popular visco-elasto-plastic models. For materials like
rubber polymers and solid foams, another popular choice is to put an
equilibrated spring in parallel with a dashpot-spring series; then they
are connected to a sliding friction element as a whole. Generalization
of this choice results in a decomposition of F = FEFP , FE = FN FV ,
and thus F = FN FV FP in the finite strain case, which implies
strong coupling of the two dissipative behaviors (plasticity and
viscosity) and is harder to treat than our choice from an algorithmic
perspective. We leave explorations along this direction in future
work.

3.2 Mechanical Response
The elastoplastic part of the mechanical response can be treated
as elastic stress τE that is only related to FE . The plastic flow rule
decides, for any rate of the total deformation gradient, how FP (and
thus FE ) should evolve in a thermodynamically consistent way. Due
to the vast amount of previous work [Gao et al. 2017; Klár et al.
2016; Yue et al. 2015, 2018], we skip the detailed derivation of the
plastic flow rule for common plastic materials and focus on the
non-equilibrated viscoelastic part.
We will assume the simulated material of interest is isotropic.

When viscoelastic responses exist, the total elastic potential energy
density can be expressed as the direct summation of the contribu-
tions from an equilibrated part from FE and a non-equilibrated part
from FN :

Ψ(FE , FN ) = ΨE (FE ) + ΨN (FN ). (2)

Note that both ΨE and ΨN can take the form of standard hyperelas-
tic energy densities. In this paper, we use the isotropic St. Venant
Kirchhoff model with the Hencky strain measure [Klár et al. 2016]
since it gives a linear relationship between the Kirchhoff stress and
the Hencky strain.
With finite viscoelasticity, a creep-like potential of dissipation

ΦV (τN ) is usually assumed to exist [Reese and Govindjee 1998]
(where τN is the Kirchhoff stress tensor associated with FN through
some constitutive relationship), such that the rate of the non-equilibrated

right Cauchy-Green elastic strain bN = FN FTN can be written as

DbN
Dt
= (∇v)bN + bN (∇v) + LvbN , (3)

where LvbN is the Lie derivative of bN with respect to velocityv ,
and is given by [Nedjar 2002a] LvbN = −2 ∂ΦV

∂τN
(τN )bN . The dissi-

pation potential ΦV (τN ) is designed to ensure that the mechanical
work done by the viscous stress is always dissipative.

4 ALGORITHM OVERVIEW
We describe the predictor-corrector scheme for inelasticity in §5.
Subsequently, §6 incorporates this model into the standard MPM
pipeline. For implicit integration, we describe an Augmented Lan-
grangian solver in §7. Finally, a useful damping scheme for MPM in
general is presented in §8.

5 PREDICTOR-CORRECTOR MAPPING
In the discrete setting, enforcing inelasticity is in essence a matter of
discretizing the elastic strain rate (e.g., Eq. (3)) in a numerically stable
and physically plausible manner. As in elastoplasticity, Eq. (3) can
be integrated in a predictor-corrector scheme, where the predictor
step advances bN from time tn to a trial state btrN assuming there is
no viscosity, then the corrector step integrates the contribution of
LvbN to get the corrected strain at time tn+1.

5.1 Elastic Predictor
Our formulation allows independent trial steps for the equilibrated
and non-equilibrated elastic deformation gradients. Since the defor-
mation rate can be expressed as DF

Dt = (∇v)F , the elastic predictor
stages for elastoplasticity and viscoelasticity are

F tr⋆ = (I + ∆t∇v)Fn⋆, ⋆ ∈ {E,N }. (4)

Note that in MPM, the Eulerian velocity gradient ∇v can be easily
evaluated on a particle using the grid velocities, which allows for a
highly efficient predictor stage independently performed on each
particle.

5.2 Inelastic Corrector
The elastoplastic corrector is usually done through the return map-
ping algorithm [Klár et al. 2016; Yue et al. 2015]. For simplicity
of notation, we express it as a projection on F trE denoted with
Fn+1E = ZE (F

tr
E ), whereZE is is usually a piecewise function that

enforces the feasibility of the elastic stress based on the location of
F trE [Klár et al. 2016].
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Fig. 6. The effect of equilibrated shearmodulus and viscosity. µE con-
trols the fluidity; when it is close to zero, the material has negligible shearing
resistance to retain its shape and becomes a fluid. ν , the viscosity coefficient,
acts as a viscous damper such that larger ν values cause more resistance to
rapid deformation through non-equilibrated elasticity.

It turns out that the corrector for F trN can also be explicitly written
as a projection. In particular for isotropic materials, if we adopt the
singular value decomposition FN = UN ΣNVN

T and introduce the
principal diagonal Hencky strain ϵN = ⟨logΣN ⟩ where operator
⟨⟩ maps a diagonal matrix to its vector form, then the implicit dis-
cretization of DbNDt = LvbN can be shown to reduce to a potentially
nonlinear equation system for ϵn+1 [Nedjar 2002b]

ϵn+1N = ϵ trN − ∆t
∂ΦV
∂τN

(τn+1N (ϵn+1N )), (5)

where τN = ∂ΨN
∂ϵN is the principal Kirchhoff stress in vector form.

Non-equilibrated elasticity. For the non-equilibrated energy den-
sity ΨN , we adopt the St. Venant Kirchhoff model with the Hencky
strain measure, which can be expressed in the principal strain space
ΣN as ΨN (ΣN ) = µN tr

(
(logΣN )2

)
+ 1

2λN (tr(logΣN ))2, with the
corresponding principal Kirchhoff stress

τN =
∂ΨN
∂ϵN

= 2µN ϵN + λN tr(ϵN )1, (6)

where 1 denotes the all-ones vector, µN and λN are the material
Lamé parameters.

Dissipation potential. The pseudo-potential of dissipation ΦV (τN )

is chosen to be quadratic in terms of the principal non-equilibrated
stress: ΦV (τN ) = 1

2νd |dev(τN )|2 + 1
9νv (τN · 1)2, where dev(τN ) =

τN − 1
d (τN · 1)1 is the deviatoric part of the principal stress and d =

2 or 3 is the problem dimension. νd and νv are viscosity parameters
separately controlling the dissipation of the deviatoric and dilational
parts of the non-equilibrated stress. The derivative of the dissipation
potential is

∂ΦV
∂τN

(τN ) =
1
νd

dev(τN ) +
2

9νv
tr(τN )1, (7)

which separately controls the viscous flow on the deviatoric and
dilational non-equilibrated stresses.

Fig. 7. Twisting. Our ADMM-based integrator reveals similar behaviors to
explicit integration for hyperelastic and inelastic (von-Mises) models.

Correcting the strain. Substituting Eq. (6) and (7) into (5) gives
ϵn+1N = ϵ trN − ∆t

(
αϵn+1N + βtr(ϵn+1N )1

)
, where α = 2µN

νd
and β =

2(2µN +λN d )
9νv −

2µN
νdd

are constants. It has an analytic solution of

ϵn+1N = A
(
ϵ trN − Btr(ϵ trN )1

)
, (8)

whereA = 1
1+∆tα , B =

∆t β
1+∆t (α+dβ ) . Note that more complex nonlin-

ear dissipation potentials for ΦV (τN ) could also be chosen for more
versatile dissipation behaviours, which would potentially cause
the equations for ϵn+1N to become a nonlinear system that requires
Newton’s method to solve. Since ϵn+1 = ⟨log(Σn+1N )⟩, Eq. (8) de-
fines an analytic and smooth projection Fn+1N = ZN (F trN ). Equiv-
alently, the projection can be expressed in the principal space as
Σn+1N = ẐN (ΣtrN ), whose derivative is given by

∂ẐN
∂ΣN

(ΣtrN ) = Σn+1N A
(
(ΣtrN )−1 − B1

〈
(ΣtrN )−1

〉T )
.

As we explain later, such a derivative plays an important part in our
implicit inelasticity integration.

6 MATERIAL POINT METHOD
Our viscoelasticity scheme fits well into the standard MPM dis-
cretization scheme [Sulsky et al. 1995] due to (1) its similarity to
plasticity return mapping, and (2) the embarrassingly independent
strain treatment on MPM particles. MPM uses meshless particles to
track the mass, volume, deformation gradients, and stress over the
whole continuum, and an Eulerian background grid as a scratchpad
for solving the governing equations in each time step. Throughout
this work we use subscripts p,q for particle indices and i, j,k for
background grid nodal indices. We use superscript 0,n,n + 1 for
time discretization instances.

We assume the usage of Affine Particle-In-Cell [Jiang et al. 2015]
particle/grid transfers for stability and Moving Least Squares MPM
[Hu et al. 2018] force computation for efficiency. At time tn , MPM
typically lets particles carry massmp , original volume V 0

p , position
xnp , velocity vn

p , affine velocity gradient Cnp and elastic deforma-
tion gradient FnE . For viscoelasticity, we additionally store the non-
equilibrated elastic deformation gradient FnN . The core steps from
tn to tn+1 are:

ACM Trans. Graph., Vol. 38, No. 4, Article 118. Publication date: July 2019.



Silly Rubber: An Implicit Material Point Method for Simulating Non-equilibrated Viscoelastic and Elastoplastic Solids • 118:7

1 2

3

4

5 6

7

8

Fig. 8. Algorithm flow. In the pre-computation stage, we perform the standard P2G, evaluate and store the global matrix from F n
⋆ , and also enforce that the

initial guess of nodal velocity changes satisfies the boundary condition. Then, within the ADMM stage, we alternate particle step, grid step, and dual step
sequentially. After the exit criterion is met, although we have both deformation gradients and nodal velocity changes available, only the latter one is adopted
and then used to evolve the trial deformation gradient to ensure consistency in the G2P stage. Proper inelastic projection can be optionally applied afterward.

(1) Precomputation. We sort particles based on their positions
for better memory locality. Optional numerical damping can
be added according to the method described in §8.

(2) Particles-to-grid. Grid massmn
i and velocitiesvn

i are trans-
ferred from particles using APIC [Jiang et al. 2015].

(3) Explicit force computation. Explicit forces on the grid f ni
are computed using MLS-MPM [Hu et al. 2018]. This con-
tains contributions from gravity, equilibrated elastic stress
∂ΨE
∂FE

(FnE ), and non-equilibrated elastic stress ∂ΨN
∂FN

(FnN ).
(4) Evaluating velocity increment. For symplectic Euler inte-

gration, the grid velocity increment is simply δvi = f ni ∆t .
However, for a backward Euler discretization of implicit in-
elasticity, we need to solve a non-linear system of equations
to get δv (see §7). Boundary conditions are enforced on δv
(§7.2).

(5) Grid-to-particles. By having vn+1
i = vn

i + δvi , APIC can
be used again to get the updatedvn+1

p and Cn+1p .
(6) Particle strain update. Strains Fn+1E and Fn+1N are updated

through the corresponding prediction-correction scheme to
account for plasticity and viscoelasticity effects (§5.2).

(7) Particle advection with xn+1p = xnp +v
n+1
p ∆t .

It is clear that for an existing MPM elastoplasticity framework
with explicit integration, only three additional steps (non-equilibrated
force computation, strain prediction, and strain correction) are
needed for adding viscoelasticity. Fully implicit integration is some-
times favored, especially for highly stiff materials (in which case,
symplectic Euler suffers from extremely small time step sizes due
to the existence of the CFL condition [Fang et al. 2018]). To handle
such cases, we present a pseudo-optimization-based implicit solver
in §7. We also give its algorithmic flow in Fig. 8.

7 AUGMENTED LAGRANGIAN SOLVER
To handle stiff materials with large time steps, implicit time inte-
gration schemes such as backward Euler are preferred, especially
for large deformations [Gast et al. 2015]. However, it is more com-
plicated when it comes to inelastic problems due to the lack of an
analytic smooth energy that directly results in force balance. Klár
et al. [2016] apply backward Euler to granular materials at the cost

of solving a non-symmetric linear system in each Newton itera-
tion. Furthermore, a C0 smooth plasticity projection operator (Z)
from Drucker-Prager leads to poor stability since line search can-
not be used. As a result, Klàr et al. [2016] have to take tiny time
steps, resulting in an implicit solver that is usually slower than ex-
plicit alternatives. Considering these difficulties, we instead adopt
an augmented Lagrangian solver enhanced with ADMM, a vari-
able splitting solver, to reduce the difficulty associated with the
non-smooth problem.
Overby et al. [2017] introduced ADMM to simulate real-time

mesh-based elasticity with great success. ADMM alternates between
solving two sets of primal variables and one additional set of dual
variables that serves to iteratively adjust the “forces” applied to
each set of the primal variables. We show that by including in-
elasticity into the formulation, ADMM successfully decomposes
the high-dimensional non-smoothness associated with the large
implicit system of the inelastic problem on the MPM grid into nu-
merous low-dimensional non-smoothness within each particle’s
local systems – allowing large time steps with stability and visually
plausible behaviors.

7.1 Formulation
When considering inelastic problems, an optimization-based refor-
mulation of backward Euler needs to take into account the existence
of potentially non-smooth projection operations, ZE and ZN . The
analytic form of the potential energy is, however, challenging to
express (although possible with Ortiz and Stainier’s variational for-
mulation [1999]). By noticing inelastic force balance comes from the
stress evaluated on the projected strain, we can integrate the stress to
define integral energy density functions ΞE =

∫
∂ΨE
∂FE

(ZE (F
tr
E ))dFE

and ΞN =
∫

∂ΨN
∂FN

(ZN (F trN ))dFN for both the equilibrium part and
the non-equilibrated part, while their gradients would be the corre-
sponding equilibrium force and non-equilibrated force. Then our
problem can be described as

argmin
δv,F tr

⋆

1
2
δvTMδv +

∑
p

∑
⋆∈{E,N }

V 0
p Ξ⋆,p − ∆tδvTMд

subject to W⋆(F
tr
⋆ − Dδv − b) = 0, ⋆ ∈ {E,N } (9)

ACM Trans. Graph., Vol. 38, No. 4, Article 118. Publication date: July 2019.



118:8 • Y. Fang et al.

where δv represents the MPM nodal velocity increment from tn to
tn+1,M is the nodal massmatrix,д is gravitational acceleration,∆t is
the time step, andW⋆ are constraint weights. Ξ⋆,p encodes particle
p’s contribution to the objective function. The definitions ofD and b
become clear when we write down how the deformation gradient is
evolved in standard MPM: F tr⋆ =

(
I +dt

∑
i δv(∇w

n
ip )

T )Fn⋆ = Dδv+

b . D and DT act as the bridges connecting node-centric quantities
and particle-centric quantities. The two constraints are completely
independent, even though both F tr⋆ are related to δv in the same
way. The corresponding Lagrangian of problem (9) can be written
as L = 1

2δv
TMδv −∆tδvTMд+

∑
⋆∈{E,N }

∫
∂Ψ⋆
∂F⋆

(Z⋆(F tr⋆ ))dF⋆ +∑
⋆∈{E,N } y⋆ : [W⋆(F⋆ − Dδv − b)] and similarly, so can the aug-

mented Lagrangian: Lρ = L+
ρ
2
∑
⋆∈{E,N } | |W⋆(F⋆ −Dδv −b)| |2F .

y⋆ are the dual variables while ρ is the penalty coefficient.
We denote F̃ as the concatenation of F⋆, and ỹ as the concatena-

tion of y⋆. ADMM alternates the updates of F̃ , δv and ỹ. We use
notation F̃ tr instead of F̃n+1 to avoid possible confusions.

Particle F⋆,p step. We solve for both F⋆,p for each particle p by

minimizing Lρ (F̃ ,δvn , ỹn ), i.e. solving ∂Lρ (F̃ ,δvn,ỹn )
∂F⋆,p

= 0, to get

V 0
p
∂Ψ⋆,p

∂F⋆,p
(Z⋆(F

tr
⋆,p )) + ρW

T
⋆,pW⋆,pF

tr
⋆,p = R⋆,p (10)

where R⋆,p = ρWT
⋆,pW⋆,p (Dδvn + b)p −WT

⋆,py
n
⋆,p .

To solve this problem, we take advantage of the property that
the solution F tr,∗⋆,p shares the same singular vectors with the right
hand side [Klár et al. 2016; Overby et al. 2017] to further simplify
the non-linear and non-smooth problem into just a d-dimensional
problem in the diagonal space for each single particle. Together
with the augmented term that essentially blends the potentially ill-
conditioned force derivative term with a positive definite diagonal
matrix at a similar scale, the systemmatrix also becomesmuch better
conditioned, making it practical to solve via Newton’s method in
large time steps even without line search.
Specifically, for the kth Newton step, in the diagonal space, we

can compute the Hessian as

V 0
p
∂2Ψ⋆,p

∂Σ⋆,p∂Ẑ⋆

(Ẑ⋆(Σ
k
⋆,p ))

∂Ẑ⋆(Σ
k
⋆,p )

∂Σ⋆,p
+ ρWT

⋆,pW⋆,p

which can be directly used to compute the particle Newton search

direction. Note that due to the existence of
∂Ẑ⋆(Σ

k
⋆,p )

∂Σ⋆,p
, the first

term is asymmetric and may become singular, e.g. when cone tip
projection happens in the Drucker-Prager plasticity model [Klár
et al. 2016].
Similarly, in the Newton-based implicit plasticity solver by Klár

et al. [2016], where the stiffness matrix is constructed on the back-
ground grid, the corresponding Hessian also includes two terms:
the first term is closely related to ours and can be singular in cer-
tain projection cases. However, their second term is determined
by grid-nodal masses and some of them can be quite small for the
grid nodes that are in the vicinity of the boundary where particle
coverage is sparse. On the other hand, our second term is entirely
based on the uniform penalty parameter, ρ, and the independent

Fig. 9. Panda. An array of balls are used to compress two pandas simulated
with viscoelasticity and hyperelasticity. While the hyperelastic panda im-
mediately recovers its shape, the viscoelastic one takes much longer time
to do so.

weighting function,W⋆,p , offering better conditioning of the small
system.

Grid δv step. The global step solves a large linear system for
nodal velocity changes δvn+1:

A δvn+1 = ∆tMд + DT
∑

⋆∈{E,N }

(
WT

⋆yn⋆ + ρW
T
⋆W⋆(F

tr
⋆ − b)

)
,

whereA = M+ρDT (
∑
⋆∈{E,N }W

T
⋆W⋆)D is SPD and can be solved

by Conjugate Gradient. We found that a diagonal preconditioner
performs sufficiently well. In practice we choose to store the matrix
since it is fixed throughout the time step. We observe that the cost of
building and using the matrix is significantly lower than performing
costly multiplication as in matrix-free Krylov solvers.

Dual variable update. We add a standard quadratic regularizer to
the augmented Lagrangian to solve for the dual steps as

yn+1⋆,p = y
n
⋆,p + ρW⋆,p

(
F tr⋆,p − Dδvn+1 − b

)
following Overby et al. [2017].

7.2 Boundary Conditions
We only need to enforce the boundary condition for the grid nodal
velocities (without worrying about the deformation gradient and
the dual variable). At the beginning of a time step, we first detect
and record the grid nodes that are in contact with collision objects,
and then ensure the initial guess of δvn+1 to satisfy the boundary
condition. During each particle step, we project inside the CG solver
to prevent any further changes in δvn+1.

7.3 Improving Convergence
Stiffness Enhanced Weighting (SEW). It is well known that con-

straint weighting is essential to ADMM convergence [Boyd et al.
2011]. Inappropriate weighting strategies will result in slow or, po-
tentially, no convergence at all. Overby et al. [2017] weight the
constraint of each mesh element using a constant bulk modulus
throughout the full simulation. While working well in most of their
cases, this strategy does not account for the current deformation
state and may perform less effectively during large deformations.
We propose a Stiffness Enhanced Weighting (SEW) that setsW⋆
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Fig. 10. Ruiz Equilibration. For the elastic case on the right, No-Ruiz needs fewer iterations than Ruiz to converge to a residual of 1e−4 due to the effectiveness
of our SEW strategy (although they would intersect as more and more iterations were run). On the other hand, for the inelastic sand model on the left, Ruiz
outperforms No-Ruiz from the beginning since SEW is known not to work well for inelastic materials due to the non-smoothness of the flow rule. We also
show that ρ , interpreted as the uniform scaling parameter, plays a key role in the overall convergence of ADMM. We have handpicked the best corresponding
ρ values for both Ruiz and No-Ruiz results for a fair comparison. Sophisticated versions of residual balancing [Wohlberg 2017] for automatically tuning ρ will
be investigated as future work.

as
√
∥
∂2Ψ⋆(Σ⋆)

∂Σ2⋆
(Σ⋆)∥F for pure elasticity at the beginning of each

time step to provide more accurate second-order information to our
ADMM solver to improve the convergence as shown in Fig. 11. For
inelastic models, ∂Ẑ⋆(Σ⋆)

∂Σ⋆
also needs to be taken into consideration;

however, when this derivative is zero, e.g., projecting to the tips
in Drucker-Prager, we use the unprojected version to avoid the
possible singularity.

Ruiz Equilibration and Residual Balancing. We further enhance
the convergence by exploring both Ruiz equilibration [Stellato et al.
2018] and residual balancing [Wohlberg 2017]. Ruiz equilibration is
derived by first constructing the KKT system with both primal and
dual variables considered, and then computing the scaling variables

0 50 100 150 200
Number of Iterations

10 9

10 7

10 5

10 3

10 1

R
e
si

d
u
a
l

Different Weight Settings

Stiffness Enhanced
Unit
Bulk Modulus

Fig. 11. Elastic Balls.Our stiffness enhanced weight significantly expedites
the convergence while both the bulk modulus weight [Overby et al. 2017]
and the unit weight fail to achieve similar performance.

that can equilibrate the norm of each row/column of the KKT system
to achieve a better condition number. Note that Stellato et al. [2018]
applied Ruiz equilibration to a simple quadratic problem; in our
case, we first linearize the portions related to the force derivatives
at the previous time step. For efficiency considerations, we compute
Ruiz equilibration once per time step. We include the derivation and
pseudo-code for Ruiz equilibration in the supplemental document
[Fang et al. 2019].

We present a convergence study for Ruiz equilibration in Fig. 10
for representative time instances with large deformation in each
simulated scene. For pure elasticity, our Ruiz equilibration fails to
outperform the non-Ruiz version augmented with our SEW, demon-
strating SEW’s efficacy. However, as mentioned, for inelasticity, with
carefully tuned ρ, Ruiz manages to deliver better improvements than
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Fig. 12. Roller. While two cases of over-relaxations (with α = 1.4 and
α = 1.6) achieve performance benefits over the one without over-relaxation,
an even larger α turns out to be detrimental.
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the non-Ruiz version since non-smoothness can easily ruin the ef-
fectiveness of SEW since occasionally unprotected stiffness is used.
Residual balancing is a heuristic method and helps to improve

the convergence in many problems by reinterpreting the penalty
coefficient ρ as a critical tool to balance the primal residual and
dual residual, such that neither of them would end up expanding
arbitrarily. In our experiments, a relatively simple version does not
seem to improve the convergence. We leave a more promising alter-
native [Wohlberg 2017] as future work. In practice, manual tuning
of ρ can still produce significantly better convergence behavior as
shown in Fig. 10.

Over-Relaxation. Another set of strategies for improving the con-
vergence of first-order methods is to utilize the information of previ-
ous iterates to construct a better approximation to the current local
energy manifold. Methods like Anderson Acceleration [Peng et al.
2018; Walker and Ni 2011] and Nesterov Acceleration [Nesterov et al.
2007] have all been shown to work effectively on unconstrained
optimization scenarios.
For the constrained solvers that explicitly handle dual variables,

e.g. ADMM, Boyd et al. [2011] suggest a simple scheme named over-
relaxation [Eckstein 1994] which looks back by one previous iterate
and applies it to the global and dual steps. In the grid δv step, we
change F tr⋆ in the right hand side to αF tr⋆ + (1−α)(Dδvn +b). In the
ADMM literature [Boyd et al. 2011], α ∈ [1, 2] usually accelerates
convergence, and α ∈ [1.5, 1.8] has been shown to work remarkably
well on specific convex problems. Since our problem is non-convex
and non-smooth, the working range of the parameter can be slightly
different and requires some tolerable manual exploration. Further-
more, in the dual step, although now δvn+1 is available, the same
replacement should be applied to ensure consistency.

8 TRANSFER-BASED DAMPING
Here we describe an extremely simple yet useful method for in-
troducing additional artificial damping into MPM simulations. The
technique described in this section is independent of the type of ma-
terial being simulated and works for any time integration schemes.

Our scheme is based on the Rigid Particle-In-Cell (RPIC) method
[Jiang et al. 2015]. As pointed out by Jiang et al. [2017], RPIC can
be thought of as a reduced APIC scheme that suppresses stretching
and shearing velocity modes. Here we assume the usage of MLS-
MPM force computation [Hu et al. 2018] and rigorously demon-
strate the equivalence of RPIC and physical viscosity. If Affine
Particle-In-Cell (APIC) is chosen as the default transfer scheme,
RPIC can be constructed by only keeping the skew-symmetric
(rotational) part of the velocity gradient matrix Cnp before per-
forming particle-to-grid transfers. This can be written as (mv)ni =∑
pmpw

n
ip

(
vn
p + (C

n
p − Cnp

T )/2(xi − xnp )
)
, which can be additively

decomposed into
∑
pmpw

n
ip

(
vn
p + C

n
p (xi − xnp )

)
(APIC contribu-

tion) and an additional impulse Ii where

Ii = −
∑
p

mpw
n
ip (C

n
p + C

n
p
T
)/2(xi − xnp ). (11)
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Fig. 13. Alien. Our iterative damping strategy easily introduces damping
in a controllable way by setting the number of RPIC iterations.

Comparing this with the MLS-MPM explicit force [Hu et al. 2018]
fi = −

∑
p V

n
p

4
∆x 2 σ

n
pw

n
ip (xi − xnp ), we can observe that the im-

pulse is equivalent to applying a force resulting from a Cauchy

stress σnp =
ρnp ∆x

2

4∆t
Cnp+Cnp

T

2 . By noticing that Cnp is a discrete ve-
locity gradient evaluation, such a stress corresponds to a standard
Newtonian viscosity with kinematic viscosity of value ν = 1

8
∆x 2

∆t ,
which turns out to exactly match the diffusive stability constraint
ν∆t/∆x2 ≤ (1/2)3 [Johnston and Liu 2004] for high Reynolds num-
ber viscous fluids at the critical point.

In other words, we demonstrated that going from APIC to RPIC
is equivalent to performing Newtonian viscosity explicitly without
breaking the requirement for numerical stability. Given this appeal-
ing theoretical ground, we could introduce an arbitrary amount of
unconditionally stable numerical damping by performing multiple
RPIC velocity transfer round-trips between particles and the grid
(without particle advection or strain update) as a preprocessing rou-
tine in each time step. Due to the conservative properties of RPIC,
such a numerical damping scheme is not only easy to implement
and can be used in any MPM integrator, but also precisely conserves
linear and angular momentums. In Fig. 13, we compare the effect
of RPIC damping iterations on the simulation of a dropping elastic
object. We believe continuous control of damping is also possible
by artificially adjusting the ∆t value in the virtual RPIC round-trips.
More in-depth investigation of fully controllable damping is left for
future work.
It is noteworthy that Newtonian viscosity can also be directly

incorporated into the conservation of momentum as done by Ram
et al. [2015]. Within our ADMM framework, it corresponds to an
additional term in the global system. We found the transfer-based
damping more useful in practice due to its guaranteed stability
(especially for explicit integration), ease of implementation, and
computational efficiency.
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Table 2. Simulation parameters and statistics. Particle count and time per frame are provided as average values. All numbers are measured on an Intel
Core i9-9900K CPU with 8 cores at 3.60 GHZ.

Example Sec/Frame ∆x ∆t N ρ µE λE µN λN ν

(Fig. 1) Cherries 228.5 5.0 × 10−3 2.0 × 10−3 0.43M 2 3.4 × 10−3/1.4 × 10−2 2.9 × 101 2.1 × 100 8.6 × 100 4.8 × 10−3/2.0 × 10−2
(Fig. 3) Warrior 122.6 6.0 × 10−3 4.0 × 10−3 0.52M 2 3.6 × 10−3 1.4 × 102 7.1 × 100 2.9 × 101 2.0 × 10−1
(Fig. 7) Twisting Metal 58.4 1.0 × 10−2 5.0 × 10−3 0.20M 2 7.1 × 102 2.9 × 103 - - -
(Fig. 7) Twisting Elastic 29.4 1.0 × 10−2 1.0 × 10−2 0.20M 2 3.6 × 101 1.4 × 102 - - -
(Fig. 5) Silicone Rubber 82.1 7.5 × 10−3 8.5 × 10−3 0.65M 2 1.8 × 100 7.1 × 101 1.8 × 101 7.1 × 101 1.0 × 101
(Fig. 9) Panda 51.1 1.0 × 10−2 8.5 × 10−5 0.42M 2 1.8 × 100 7.1 × 101 1.8 × 101 7.1 × 101 3.0 × 100
(Fig. 14) Coil 26.0 1.0 × 10−2 4.0 × 10−3 0.16M 2 3.5 × 10−3 1.4 × 103 7.1 × 100 2.9 × 101 4.0 × 10−1
(Fig. 15) Pet Monster 21.9 1.0 × 10−2 1.1 × 10−2 0.20M 2 3.8 × 10−1 5.8 × 100 3.8 × 100 5.8 × 100 5.0 × 10−2
(Fig. 1) Faceless 41.1 1.5 × 10−2 1.4 × 10−2 0.42M 2 1.8 × 100 7.1 × 101 1.8 × 101 7.1 × 101 1.0 × 101
(Fig. 2) Car 64.2 2.0 × 10−2 3.5 × 10−3 0.22M 2 7.1 × 102 2.9 × 103 - - -
(Fig. 17) Sofa 574.1 3.7 × 10−3 3.5 × 10−3 1.57M 2 3.6 × 10−1 1.4 × 102 3.6 × 101 1.4 × 102 3.0 × 10−1

9 RESULTS
We implement our method on a high-performance CPU-based MPM
code base (to be open-sourced on the authors’ homepages). We
also attach the pseudo-codes for our implicit inelasticity solver
in the supplemental document. Note that nothing is preventing a
straightforward integration of ourmethod into a GPUMPMpipeline,
e.g. that of Gao et al. [2018b]. All of our simulation statistics are
measured on an Intel Core i9-9900K CPU. For rendering fluid-like
materials, we reconstruct the surface from the particles using Open-
VDB [Museth et al. 2013]. For solid-like materials without topology
change, we embed a high resolution surface [Wojtan et al. 2009] in
the original particle samples, and deform it with the deformation
flow. The embedded surface gracefully retains the sharp and flat
features without requiring any post-processing such as Gaussian
smoothing. In practice, we solve global steps with high tolerances
and use a fixed number of ADMM iterations for efficiency consider-
ations. We adopt the Stiffness Enhanced Weighting in all examples.
Ruiz and over-relaxation require additional computational cost that
does not compensate for the convergence improvement they bring
in high-resolution 3D cases. Higher performance utilization of these
is left to future work.

Controlling the look. By varying the equilibrated shear modulus
µE (Fig. 14, Fig. 1), we can control the fluidity of the simulated matter.
In particular, µE = 0 will degrade the equilibrated hyperelasticity
model into a nearly incompressible fluid. As such, smaller µE re-
sults in a more fluid-like look, and larger µE corresponds to a more
elastic (and shape-preserving) behavior. Note that unlike plasticity

Fig. 14. Coil. Our model can easily capture coil buckling behavior as shown
on the left. From left to right the equilibrated shear modulus coefficient
increases and coils behave more and more elastically.

or viscoplasticity which tend to trigger permanent changes of the
rest shape, viscoelastic materials always retain an invariant rest
shape. However, when µE is too small to resist large distortions or
topological changes, MPM automatically complies with a geomet-
rically plausible shape without trying to pull the material back to
its original shape. This can be illustrated by dropping a long and
thick viscoelastic sheet onto a rotating statue, producing complex
folding behaviors (Fig. 3). Similarly, viscosity parameters νv and νd
control the intensity of the viscous force. We pick the same value
for simplicity. Objects with larger viscosity have greater resistance
to rapid motion as shown in Fig. 15.

Traditional elastoplasticity can also be easily integrated into our
framework (Fig. 7, 2). Our ADMM solver generates similar results to
those of explicit MPM solvers. Our framework can also be applied to
Drucker-Prager materials as demonstrated in Fig. 16. For handling
high stiffness models (e.g. sand) explicit time integration has to
work with a small time step. On the other hand, traditional implicit
solvers, e.g., the Newton solver used in [Klár et al. 2016], rely on
GMRES for solving a large asymmetric system, proving to be even
slower than explicit alternatives even with a relatively large time
step. Our framework can generate visually plausible results without
requiring stringently accurate convergence. As a result, our solver
stays stable even when the time step is larger than what is permitted
in [Klár et al. 2016] and achieves high performance.
Sand has also been popularly modeled with other continuum

approaches, for instance, as a unilaterally incompressible viscoplas-
tic medium [Narain et al. 2010], in which case the adaptation of
our framework (for incompressibility) demands future exploration.

Fig. 15. Petmon. From left to right, we demonstrate that larger νd and νv
show more resistance to high rate deformation.
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Fig. 16. Sand column collapse. Our ADMM solver not only captures char-
acteristic sand column collapse dynamics, but also improves the overall
performance since our solver permits a much larger time step. Left shows
timing comparison against explicit integration, and right shows nonlinear
residual norm decrease (averaged per frame) with 15 ADMM iterations.

The work by Daviet and Bertails-Descoubes [2016] also treats sand
as a nonsmooth viscoplastic granular media and captures implicit
friction by leveraging nonsmooth optimization techniques in MPM.
We performed the sand column collapse test (Fig. 16) with Daviet’s
open-source code, and observed 40% better performance than ours.

Viscoelastic solids can slowly recover to the original shape after
severe deformations (Fig. 5). We make comparisons between our
viscoelasticity model and traditional hyperelasticity model as on
the left of Fig. 1 and as in Fig. 9. While the hyperelastic objects
immediately recover the default shape, the viscoelastic ones take
much longer to do so. Our framework can also automatically pro-
duce detailed fractures when a collision cylinder moves and collides
with a solid foam-like sofa as in Fig. 17.

10 LIMITATIONS AND FUTURE WORK
In this paper, we presented a framework for simulating viscoelastic
solids and fluids with MPM. Our formulation results in a strain pro-
jection algorithm that is remarkably similar to the standard return
mapping for plasticity, and can be easily integrated into any existing
MPM framework. To enable fully implicit integration with backward
Euler we extend the recently advanced ADMM from FEM hypere-
lasticity to MPM inelasticity. Inelasticity prohibits the existence of
an easily evaluable objective function. Nonetheless, we show that
the variable splitting approach with the updated Lagrangian results
in a robust and efficient solver.

Fig. 17. Sofa. Two solid foam sofas get torn apart and come to rest, showing
the intricate topology change automatically handled by MPM.

While allowing visually plausible results, our formulation inherits
the limitations of ADMM itself. ADMM belongs to the family of
first-order methods. Even though it can rapidly reduce the residual
in the first few iterations, it soon gets stuck in a slow convergence
zone. Furthermore, most applications that favor ADMM have no
stringent demands for high accuracy. However, for certain hard
constraints such as incompressibility and inextensibility, low ac-
curacy would render unacceptable consequences. This restriction
is challenging but worth solving, and we would like to investigate
possible solutions (such as Nesterov-type acceleration [Goldstein
et al. 2014]) as our future work.
Our framework also inherits limitations from MPM. For exam-

ple, even though elastic volume change is captured by the elastic
deformation (and the inelasticity projection is volume preserving),
perfect visual volume preservation is not automatically guaranteed
due to the numerical errors in advection. We would like to explore
improving particle distribution as future work.
In contrast to the return mapping-based approaches, hyperplas-

ticity [Houlsby and Puzrin 2007] provides a thermodynamically
consistent reformulation of elastoplasticity as a clearly defined op-
timization problem following the second law of thermodynamics.
We would like to explore efficient options under these principles.
Extending our current formulation to viscoplasticity to capture ef-
fects such as in Yue et al. [2015] is also an exciting direction. Finally,
we would like to include quantitative validations with real data to
study the predictivity of our framework in computational science.
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