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1 Viscoelasticity

In this section, we briefly discuss some continuum mechanics background for the viscoelasticity proposed
and discussed in this work. For elastoplasticity we refer the readers to the previous works of [4, 2, 10,
11, 1, 3]. Specifically, the supplemental document of [4] stands as good introductory material for graphics
researchers new to continuum mechanics simulation techniques. Since we focus on materials such as rubber
polymers and solid foams with large elastic deformation, we assume finite strain elasticity; however, we
first introduce a simple one-dimensional linear model as motivation.

1.1 Motivation: one-dimensional infinitesimal case

Figure 1: 1D rheological model

As illustrated in Fig. 1, the 1D model consists of two parallel components. The top one represents elasto-
plasticity that can be reduced to pure elasticity when the plastic element is removed. The plastic element
characterizes the response due to permanent deformation. Notice the top part of the model is time-
independent, thus we refer to the elastic spring as the equilibrium spring. On the other hand, the bottom
component represents the viscoelasticity via a standard Maxwell element, which is usually used to denote
a time-dependent elastic response. Specifically, the dashpot captures the viscous part of the deforma-
tion due to its rate of change and does not contribute to the total elastic potential energy. The bottom
part is referred to as the non-equilibrium component due to the existence of this rate-dependent viscous
deformation.

The “total” stress σ exerted on the external environment from the model should be equal to the sum
of the stresses contributed by each component as

σ = σtop + σbot.

σtop can be computed from either the equilibrium elasticity or the plasticity while σbot can be computed
from either the non-equilibrium elasticity or the viscous element from Newton’s third law. Assuming the
total strain of the model is ε, the strain of the plasticity is εP and the strain of the viscosity is εV , the
stresses can be computed as,

σtop = EE(ε− εp)
σbot = EN (ε− εV ) = η ˙εV

where EE , EN and η are the spring and dashpot constants respectively. From examples shown in the main
paper, we can clearly see that the elastoplastic component will still determine the overall behavior while
the viscosity will decide the resistance to rapid deformation.
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There are two takeaway observations from this model. First, the two parallel components are indepen-
dent of each other; i.e., the two stresses can be separately computed from the two spring strains without
considering the other component. Second, the total stress is the sum of the two stresses from the two
independent components. In the next section, this simple model will be extended to a 3D finite strain
regime.

1.2 Three-dimensional case

In 3D, an energy model would be required to encode the relationship between stress and strain. In the
infinitesimal regime, we can still get the equilibrated/non-equilibrated spring strains by subtracting the
plasticity/viscosity strain from the whole strain; in other words, additive decomposition of the strain is
used to define the energy. On the other hand, in the finite regime, multiplicative decomposition of the
deformation gradient (instead of strain) is preferred:

F = FEFP = FNFV (1)

From Eqn. (1), it seems that the elastoplastic and viscoelastic parts can be handled independently and the
resulting stresses are superimposed to evolve the dynamic deformation (similar to the 1D case). A detailed
proof is provided in [5].

Starting from the Clausius-Duhem inequality, the form of the second law of thermodynamics used in
continuum mechanics, Reese and Govindjee [8] proved that there exists a pseudo dissipation potential ΦV
with an appropriate convex, positive form such that the total entropy does not decrease. The potential
adopted in our method in the main paper is a simple linear case whereas complex nonlinear models are
found in the literature.

Given this potential energy, the standard prediction-correction method in elastoplasticity [4] can be
extended to tackle viscoelasticity without many changes. Considering finite deformation, the ultimate goal
is always to solve for the deformation gradient at the new time step tn+1. However, as shown in [4], it is
more straightforward, yet equivalent, to solve for the right Cauchy-Green strain bN = FNF

T
N at the new

time step tn+1. Its evolution equation can be written as

DbN
Dt

= (∇v)bN + bN (∇v) + LvbN (2)

where LvbN is the Lie derivative encoding the deformation change due to the inelasticity. The first
two terms correspond to solving for the trial state of btr

N by only considering the pure non-equilibrated
elasticity part; meanwhile, the last term corresponds to the correction step where the viscosity is taken
into consideration to rectify btr

N to bn+1
N . In other words, operator splitting is employed. Similar to Klar et

al. [4], only isotropic models are considered, and the derivations is all performed in diagonal space due to
the simplicity it brings.

For completeness, we also include some materials from the main paper to explain the correction step
for viscoelasticity. It turns out that the correction from F tr

N to F n+1
N can also be explicitly written as

a projection. In particular for isotropic materials, if we adopt the singular value decomposition FN =
UNΣNVN

T and introduce the principal diagonal Hencky strain εN = 〈logΣN 〉 where operator 〈〉 maps a
diagonal matrix to its vector form, then the implicit discretization of DbN

Dt = LvbN can be shown to reduce
to a potentially nonlinear equation system for εn+1 [6].

εn+1
N = εtr

N −∆t
∂ΦV
∂τN

(τn+1
N (εn+1

N )), (3)

where τN = ∂ΨN
∂εN is the principal Kirchhoff stress in vector form.

Non-equilibrated elasticity. For the non-equilibrated energy density ΨN , we adopt the St. Venant
Kirchhoff model with the Hencky strain measure, which can be expressed in the principal strain space ΣN
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as ΨN (ΣN ) = µN tr
(
(logΣN )2

)
+ 1

2λN (tr(logΣN ))
2
, with the corresponding principal Kirchhoff stress

τN =
∂ΨN

∂εN
= 2µNεN + λN tr(εN )1, (4)

where 1 denotes the all-ones vector, µN and λN are the material Lamé parameters.

Dissipation potential. The pseudo-potential of dissipation ΦV (τN ) is chosen to be quadratic in terms
of the principal non-equilibrated stress: ΦV (τN ) = 1

2νd
|dev(τN )|2 + 1

9νv
(τN · 1)2, where dev(τN ) = τN −

1
d (τN · 1)1 is the deviatoric part of the principal stress and d = 2 or 3 is the problem dimension. νd and
νv are viscosity parameters separately controlling the dissipation on the deviatoric and dilational parts of
the non-equilibrated stress. The derivative of the dissipation potential is

∂ΦV
∂τN

(τN ) =
1

νd
dev(τN ) +

2

9νv
tr(τN )1, (5)

which separately controls the viscous flow on the deviatoric and dilational non-equilibrated stress.

Correcting the strain. Substituting Eq. (4) and (5) into (3) gives εn+1
N = εtr

N−∆t
(
αεn+1

N + βtr(εn+1
N )1

)
,

where α = 2µN
νd

and β = 2(2µN+λNd)
9νv

− 2µN
νdd

are constants. It has an analytic solution of

εn+1
N = A

(
εtr
N −Btr(εtr

N )1
)
, (6)

where A = 1
1+∆tα , B = ∆tβ

1+∆t(α+dβ) . Note that more complex nonlinear dissipation potentials for ΦV (τN )

could also be chosen for more versatile dissipation behaviours, which could potentially cause the equations
for εn+1

N to become a nonlinear system that requires Newton’s method for the solution.
Since εn+1 = 〈log(Σn+1

N )〉, Eq. (6) defines an analytic and smooth projection F n+1
N = ZN (F tr

N ).

Equivalently, the projection can be expressed in the principal space as Σn+1
N = ẐN (Σtr

N ), whose derivative
is given by

∂ẐN
∂ΣN

(Σtr
N ) = Σn+1

N A
(

(Σtr
N )−1 −B1

〈
(Σtr

N )−1
〉T)

.

1.3 Discussion

Another popular approach to the visco-elastic-plastic model consists of a standard linear solid in series with
a plastic element, i.e., F = FEFPFV . However, this model would lead to the strong coupling of viscosity
and elastoplasticity [5, 6], which largely complicates the solve. In contrast, in our model, the viscoelasticity
and elastoplasticity are decoupled and can be tackled independently leading to a much simpler problem.

2 ADMM Solver

Considering that the equilibrated projection and the non-equilibrated projection are independent of each
other and possess no fundamental differences with regards to our ADMM solver, we will drop the superscript
? ∈ {E,N} for simplicity. Furthermore, we will first only consider the pure elasticity and defer the
discussion of elastoplasticity/viscoelasticity to Section 2.4.

2.1 Formulation

Given a pure elasticity model, the time integration can be formulated by

argmin
dv,F

1

2
dvTMdv + Ψ(F )−∆tdvTMg

subject to W(F −Ddv − b) = 0,
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where M is the nodal mass matrix, Ψ(F ) is the elastic potential energy, g is the gravitational acceleration,
and the unknowns are both the particles’ deformation gradient F and the nodal velocity change dv. The
definitions of D and b become clear if we write down how the deformation gradient is evolved as in the
main paper. Notice W is the weight for the constraint connecting the two sets of unknowns. As has been
shown in the literature, W plays a crucial role in improving the convergence of the ADMM solver.

The Lagrangian and augmented Lagrangian can be written as

L =
1

2
dvTMdv + Ψ(F )−∆tdvTMg + y : [W(F −Ddv − b)]

Lρ = L+
ρ

2
||W(F −Ddv − b)||2F

where y is the dual variable and ρ is the penalty coefficient. To us, ρ is the uniform scaling parameter
shared by all particles while W’s are more like the independent scaling parameters for every single particle.

ADMM alternates the updates of F , dv and y as

F n+1 = argmin
F

Lρ(F , dv
n,yn)

dvn+1 = argmin
dv

Lρ(F
n+1, dv,yn)

yn+1 = argmax
y

Inf {Lρ(F n+1, dvn+1,y)− 1

2ρ
||y − yn||2F }

To avoid possible confusion, we stick to dual variable y instead of its scaled version as in [7].

Local step. For each particle p, we solve

F n+1 = argmin
F

Ψ(F ) + y : (WF ) +
ρ

2
||W(F −Ddv − b)||2F

by computing the gradient,

0 = V P n+1 + WTy + ρWT [W(F −Ddv − b)]
V P n+1 + ρWTWF = ρWT [W(Ddv + b)]−WTy

V P n+1 + ρWTWF = ρWT [W(Ddv + b− 1

ρ
W−1y)] (7)

The local step is a nonlinear problem of F . For efficiency, we solve it in the diagonal space with a standard
Newton solver. Assuming the SVD decomposition of the right-hand side (excluding ρ and W) of Eqn. (7)
gives the two rotation matrices U and V , we can apply left-multiplication with UT and right-multiplication
with V to both sides to convert to the diagonal space [7] as

V P̂ n+1 + ρWTWF̂ = ρWTWΣ

where Σ is the corresponding singular values. Notice that we enforce W to have the form of wI, where
w is a scalar, when applying Ruiz equilibration. To always guarantee the Newton direction is a descent
direction, we need to do positive definite projection to the constitutive model’s Hessian.

Global step. We solve globally

dvn+1 = argmin
dv

1

2
dvTMdv −∆tdvTMg − y : WDdv +

ρ

2
||W(F −Ddv − b)||2F

by computing the gradient,

0 = Mdv −∆tMg −DTWTy − ρDTWT [W(F −Ddv − b)]
(M + ρDTWTWD)dv = ∆tMg +DTWTy + ρDTWT [W(F − b)]

Notice the condition number of the “stiffness” matrix of this global solve is usually much better than the
one of the standard implicit MPM.
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Dual step. The problem in y-step is non-smooth, thus we add a quadratic regularizer to the augmented
Lagrangian and solve

yn+1 = argmax
y

Inf {Lρ(F n+1, dvn+1,y)− 1

2ρ
||y − yn||2F }

by computing the gradient and setting it to 0:

W(F n+1 −Ddvn+1 − b)− 1

ρ
(yn+1 − yn) = 0

yn+1 = yn + ρ[W(F n+1 −Ddvn+1 − b)]

2.2 ADMM Residuals

We denote optimal primal variables by F ∗ and dv∗, and the optimal dual variable by y∗. The primal
feasibility condition can be written as

W(F ∗ −Ddv∗ + b) = 0

and dual feasibility conditions are

0 =
∂Lρ
∂F

0 =
∂Lρ
∂dv

We can define the primal residual as

rn+1 = W(F n+1 −Ddvn+1 − b)

From the global step, we have

0 =
∂Lρ
∂dv

∣∣∣∣
dvn+1

= Mdvn+1 −∆tMg −DTWTyn − ρDTWT [W(F n+1 −Ddvn+1 − b)]
= Mdvn+1 −∆tMg −DTWT (yn + ρ[W(F n+1 −Ddvn+1 − b)])
= Mdvn+1 −∆tMg −DTWT (yn + ρrn+1)

= Mdvn+1 −∆tMg −DTWTyn+1

so dvn+1 and yn+1 satisfy the second dual feasibility condition. Let’s check the first one. From the local
step, we have

0 =
∂Lρ
∂F

∣∣∣∣
Fn+1

= VpP
n+1
p + WTyn + ρWT [W(F n+1 −Ddvn − b)]

= VpP
n+1
p + WTyn + ρWT [W(F n+1 −Ddvn+1 − b) + WD(dvn+1 − dvn)]

= VpP
n+1
p + WTyn + ρWT [rn+1 + WD(dvn+1 − dvn)]

= VpP
n+1
p + WT (yn + ρrn+1) + ρWT [WD(dvn+1 − dvn)]

= VpP
n+1
p + WTyn+1 + ρWT [WD(dvn+1 − dvn)]

When the third term becomes zero, the first feasibility is satisfied. Thus we can define the dual residual as

sn+1 = ρWT [WD(dvn+1 − dvn)]
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2.3 Ruiz equilibration

As discussed in the main paper, several attempts for improving the ADMM convergence have been exam-
ined in our experiments. Particularly, we adopt the Ruiz equilibration [9] (originally designed for simple
quadratic problems) and adapt it to our nonlinear problem.

Let’s start from the Lagrangian,

L =
1

2
dvTMdv + Ψ(F )−∆tdvTMg + y : [W(F −Ddv − b)]

which is a nonlinear function of F . To make it easier, we will try to derive the Ruiz equilibration from the
linearized version,

L =
1

2
dvTMdv + Ψ(F n) +

∂Ψ

∂F

∣∣∣∣
Fn

: (F − F n)−∆tdvTMg + y : [W(F −Ddv − b)]

From the optimality condition,

0 =Vp(P
n
p +

∂P

∂F

∣∣∣∣
Fn

: (F − Fn)) + WT y (8)

0 =Mdv −∆tMg −DTWTy (9)

0 =F −Ddv − b (10)

We scale Eqn. (10) by W and write down the KKT as Z WT

M −DTWT

W −WD

 F
dv
y

 =

 sth
sth
sth

 (11)

where Z is a symmetric operator applied to F as

ZF = Vp(
∂P

∂F

∣∣∣∣
Fn

: F )

Now we can try to propose some scale to reformulate our problem. Denote the matrix in Eqn. (11) as

K =

 Z WT

M −DTWT

W −WD


and write the scaling matrix as

S =

 G
Q

R


where G, Q and R are all diagonal matrices. Thus, we can scale the original problem using those three
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diagonal matrices.

Z̄ = GZG (12)

W̄ = RWG (13)

M̄ = QMQ (14)

D̄ = G−1DQ (15)

d̄v = Q−1dv (16)

F̄ = G−1F (17)

b̄ = G−1b (18)

ḡ = Q−1g (19)

ȳ = R−1y (20)

(21)

[9] explained how to compute the scaling matrices by simply computing the infinite norm of each row
||Ki||∞, and using 1√

||Ki||∞
as the scale from an iterative process.

Algorithm 1 Ruiz equilibration

Initialization S = I, δ = 0
While ||1− δ||∞ > εtol

For i = 1..(Nn + 2 ∗Np)
Do δi = 1√

||Ki||∞
S = diag(δ)S

Return S

The remaining difficulty is due to the non-linearity of the elasticity energy density function. Instead of
solving the scaled local step, we can solve the original local problem and then scale the computed F to F̄
and use it in the global step and dual step.

2.4 Inelasticity

As discussed in the main paper, when the problem does not have a well-defined energy Ψ, we can instead
write down the integral whose derivative corresponds to the projected force due to plasticity to replace
the energy in all formulas. Moreover, all the derivations above can still be applied without any changes.
The caveat here is that our local step cannot employ the standard line search method to ensure the strict
decrease of the energy during the Newton steps. In practice, we never observed any problem in the local
solves. We postulate that it is mostly because the non-smoothness and non-linearity within the local
systems are already diminished compared to the original global non-smooth and non-linear problem [4].

3 Projection and Projection Derivatives for Plasticity

von-Mises. When the trial state is already inside the yield surface, no projection is required. Otherwise,
the projection operation is defined by

Ẑ(Σ) = eε−(||dev(ε)||−σy2µ )
dev(ε)

||dev(ε)||
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where σy is the yield stress and ε = 〈logΣ〉. The corresponding derivative is

(
∂Ẑ
∂Σ

)ij = Ẑi
(

Σ−1 −
(
1− σy

2µdev(ε)

)(
Σ−1 −

1
〈
Σ−1

〉T
d

)
− σy

2µdev(ε)

dev(ε)

||dev(ε)||
( dev(ε)

||dev(ε)||
)T

Σ−1

)
ij

Drucker-Prager. There are three different cases for Drucker-Prager. First, when the trial state is inside
the yield surface, no projection is required. Second, when the trial state indicates the MPM particle is
under tension, there should not exist any forces to prevent particles from free separation. Thus we project
the trial state to the origin, i.e. a state of zero stress. In the last case, the projection is

Ẑ(Σ) = eε−(||dev(ε)||+ dλ+2µ
2µ tr(ε)α)

dev(ε)
||dev(ε)||

where α is the friction coefficient. The corresponding derivative is

(
∂Ẑ
∂Σ

)ij = Ẑi
((1 + 2p

d
1− p

tr(ε)
ε
) 〈

Σ−1
〉T

− p
(
I − dev(ε)

||dev(ε)||
(

dev(ε)

||dev(ε)||
)T
)
Σ−1

)
ij

where

p =
α(dλ+ 2µ)tr(ε)

2µ||dev(ε)||

4 Pseudo-code

We now present the pseudo-code for our ADMM-based MPM inelasticity solver.

Algorithm 2 ADMM solver

procedure INITIAL GUESS
for all nodes i do

dvi ← (
∑
pApw

n
ip)/(

∑
p w

n
ip)

v̂ ← dvi + vni
if COLLISION DETECTED(v̂, i) then

dvi ← BOUNDARY PROJECT(v̂, i)− vni
RECORD COLLISION(i)

procedure TIME STEP
BUILD MATRIX
INITIAL GUESS
while not reach max iterations

LOCAL STEP(FE,p)
LOCAL STEP(FN,p)
GLOBAL STEP(δv)
DUAL STEP

for all particles p do
Ap ←

∑
i dviw

n
ip
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Algorithm 3 Local solver

function LOCAL FUNCTION(z)
r← MATERIAL PROJECT(z) f← FIRST PIOLA(r)
return V 0

p f + ρWpWp(r− Σp)

function local derivative(z)
r← material project(z) t← material derivative(z) g← first piola derivative(r)
return v0

pgt + ρwpwp1

function root finding(z)
while not reach max iterations

g ← local function(z)
p← local derivative(z)
step← p−1g
if step small enough

return z
z += step

return z

procedure local step(〈fp〉)
for all particles p do

c← wyp + ρwpwp(f
n
p +

∑
i δt(v

n
i + dvi)(∇wnip)tfnp )

(up,σp,vp)← svd(c)
z← utpfpvp
zsolved ← root finding(z)
fp ← upzsolvedv

t
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Algorithm 4 Global solver

procedure BUILD MATRIX
M ← 0
for all particles p do

for all nodes i do
for all nodes j do

M(i, j) += ρ∆t∆tWpWp(∇wnip)TF nE,p(F nE,p)T∇wnjp
M(i, j) += ρ∆t∆tWpWp(∇wnip)TF nN,p(F nN,p)T∇wnjp

procedure BUILD RIGHT HAND SIDE
R← 0
for all nodes i do

Ri += ∆tmi g
for all particles p do

BE,p ← ρWE,p(F
n
p −

∑
i ∆tvni (∇wnip)TF nE,p)

BN,p ← ρWN,p(F
n
p −

∑
i ∆tvni (∇wnip)TF nN,p)

for all nodes i do
Ri += WE,p

∑
p ∆tBE,p(F

n
E,p)

T∇wnip
Ri += WN,p

∑
p ∆tBN,p(F

n
N,p)

T∇wnip

procedure GLOBAL STEP(〈dv〉)
BUILD RIGHT HAND SIDE
Find 〈dvsolved〉 so M〈dvsolved〉 = R

. Solve using MINRES with large tolerance
〈dv〉 ← 〈dvsolved〉
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